Contents

1 Introduction .. 1
References .. 3

2 Spin Squeezing, Entanglement and Quantum Metrology 5
2.1 Collective Spins ... 5
 2.1.1 A Single Spin 1/2 on the Bloch Sphere 5
 2.1.2 A Large Collective Spin 6
2.2 Fluctuation Engineering 7
 2.2.1 Coherent Spin States 8
 2.2.2 Visualizing Spin States: The Husimi Q-Representation ... 10
 2.2.3 Spin Squeezed States 11
2.3 Spin Squeezing and Entanglement 12
 2.3.1 Definition of Many-Body Entanglement 12
 2.3.2 Entanglement Criteria Based on Collective Spin Variables 13
 2.3.3 Experimentally Used Quantification of Entanglement ... 14
2.4 Entangled Interferometry 16
 2.4.1 Precision Limits in Ramsey Interferometry 17
 2.4.2 Heisenberg Limit in Quantum Metrology 20
References .. 21

3 Squeezing Two Mean Field Modes of a Bose–Einstein Condensate 25
3.1 Bose–Einstein Condensates in Double-Well Potentials: Mean Field and Beyond 26
 3.1.1 Basic Concepts of Bose–Einstein Condensation 26
 3.1.2 A Bosonic Josephson Junction with Ultracold Atoms ... 27
 3.1.3 Rabi, Josephson and Fock: Different Regimes of a Josephson Junction 30
3.2 Ultracold is not Enough: Finite Temperature Effects 35
 3.2.1 Collective Mode Spectrum of the Josephson Hamiltonian 35
 3.2.2 Strategies for Optimum Coherent Spin Squeezing 37
3.3 Quantum Fluctuations in Few-Well Potentials:
 Experimental Challenges .. 40
 3.3.1 Position Stability of the External Trapping Potentials 40
 3.3.2 From Two to Few: The Six-Well Trap 42
3.4 Spin Squeezing Across a Josephson Junction: Experiments 44
 3.4.1 Detection of Number Difference and Relative Phase 44
 3.4.2 Measuring the Timescale for Adiabatic Changes 49
 3.4.3 Coherent Spin Squeezing and Many-Body Entanglement 51
 3.4.4 Particle Loss and Number Squeezing 54
References .. 56

4 Non-linear Interferometry Beyond the Standard Quantum Limit .. 59
 4.1 Squeezing: Internal Versus External Degrees of Freedom 60
 4.1.1 The Spin Model ... 61
 4.1.2 Interaction Tuning via a Magnetic Feshbach Resonance 64
 4.1.3 Experimental Characterization of the Feshbach Resonance 65
 4.1.4 What About Temperature? 68
 4.2 Fast Diabatic Spin Squeezing by One Axis Twisting Evolution 69
 4.3 One Axis Twisting in Action: Experiments 74
 4.4 Quantifying Many-Body Entanglement 78
 4.5 Many Experiments in Parallel: More Than Just Better Statistics 78
 4.5.1 Real Time Estimation of Technical Noise 82
 4.6 Heisenberg Minimal Uncertainty Product and Validity of the Symmetric Two-Mode Model 84
 4.7 Non-linear Atom Interferometer Beats “Classical” Precision Limit 86
References .. 91

5 Outlook ... 93
References .. 94
Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates
Groß, C.
2012, XII, 116 p., Hardcover
ISBN: 978-3-642-25636-3