Contents

1 **Introduction** ... 1
 1.1 Transport Phenomena in Porous Media and Modeling 1
 1.2 Molecular Dynamics Simulation and
 Homogenization Analysis .. 2
 1.3 Underground Disposal of HLW’s and Bentonite 5

2 **Introduction to Continuum Mechanics** 9
 2.1 Newtonian Mechanics ... 9
 2.2 Deformation Kinematics ... 11
 2.2.1 Motion and Configuration 12
 2.2.2 Changes of Frame and Frame Indifference 16
 2.2.3 Motion in a Non-inertial System 17
 2.2.4 Deformation Gradient, Strain and Strain Rate 19
 2.2.5 Transport Theorems and Jump Condition 25
 2.3 Mass Conservation Law .. 29
 2.4 Law of Conservation of Linear Momentum and Stress 30
 2.4.1 Eulerian Descriptions 30
 2.4.2 Lagrangian Descriptions 33
 2.5 Conservation of Moment of Linear Momentum
 and Symmetry of Stress .. 35
 2.6 Incremental Forms of the Equation of Equilibrium 36
 2.6.1 Total Lagrangian Form 36
 2.6.2 Updated Lagrangian Form 37
 2.7 Specific Description of the Equation of Motion 38
 2.7.1 Eulerian Equation of Motion 38
 2.7.2 Lagrangian Equation of Motion 39
 2.7.3 Incremental Form of the Total Lagrangian
 Equation of Motion ... 39
 2.7.4 Incremental Form of the Updated Lagrangian
 Equation of Motion ... 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Response of Materials: Constitutive Theory</td>
<td>40</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Fundamental Principles of Material Response</td>
<td>41</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Convected Derivative, Corotational Derivative and Frame Indifference</td>
<td>42</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Invariants of Stress and Strain and Isotropic Elastic Solids</td>
<td>46</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Newtonian Fluid</td>
<td>53</td>
</tr>
<tr>
<td>2.9</td>
<td>Small Strain Viscoelasticity Theory</td>
<td>56</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Boltzmann Integral and Excitation-response Theory</td>
<td>56</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Stress Relaxation and the Relaxation Spectra: Generalized Maxwell Model</td>
<td>58</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Creep and the Retardation Spectra: Generalized Kelvin-Voigt Model</td>
<td>61</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Relaxation and Retardation Spectra and Their Asymptotic Expansion</td>
<td>63</td>
</tr>
<tr>
<td>2.9.5</td>
<td>Experiments for Determining Viscous Properties</td>
<td>64</td>
</tr>
<tr>
<td>2.10</td>
<td>Small Strain Plasticity: Flow Theory</td>
<td>67</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Yield Function and Hardening Law</td>
<td>68</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Prager’s Consistency Condition</td>
<td>71</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Flow Rule and Incremental Constitutive Law</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>Non-equilibrium Thermodynamics</td>
<td>77</td>
</tr>
<tr>
<td>3.1</td>
<td>Review of Classical Thermodynamics</td>
<td>77</td>
</tr>
<tr>
<td>3.1.1</td>
<td>An Application of Classical Thermodynamics for a Newtonian Fluid</td>
<td>78</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Role of the Second Law of Thermodynamics in Classical Theory</td>
<td>79</td>
</tr>
<tr>
<td>3.1.3</td>
<td>The Entropy Inequality in Classical Continuum Mechanics</td>
<td>80</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Note on the Proposed Framework</td>
<td>81</td>
</tr>
<tr>
<td>3.2</td>
<td>Conservation of Energy: The First Law of Thermodynamics</td>
<td>82</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Stokes’ Power Formulation as Mechanical Conservation of Energy in a Continuum: Eulerian Description</td>
<td>82</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Generalized Strain Measure and its Conjugate Stress in a Continuum</td>
<td>86</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Stokes’ Power Formula in a Continuum: Lagrangian Description</td>
<td>87</td>
</tr>
<tr>
<td>3.2.4</td>
<td>First Law of Thermodynamics in a Thermo-mechanical Continuum: Conservation of Mechanical and Thermal Energies</td>
<td>88</td>
</tr>
<tr>
<td>3.2.5</td>
<td>First Law of Thermodynamics in a Thermo-mechanical Continuum: Eulerian Description</td>
<td>89</td>
</tr>
<tr>
<td>3.2.6</td>
<td>First Law of Thermodynamics in a Thermo-mechanical Continuum: Lagrangian Description</td>
<td>90</td>
</tr>
</tbody>
</table>
3.3 Second Law of Thermodynamics .. 90
 3.3.1 Thermal Energy and the Existence of Entropy: The First Part of the Second Law of Thermodynamics ... 91
 3.3.2 Entropy Inequality: Second Part of the Second Law of Thermodynamics .. 92
 3.3.3 Second Law of Thermodynamics in a Thermo-mechanical Continuum: Lagrangian Description ♠ 97

3.4 Thermodynamic Functions .. 97
 3.4.1 Legendre Transformation and Convex Functions 98
 3.4.2 Thermodynamic Functions in a Thermo-mechanical Field: Solids with Small Strain 99
 3.4.3 Thermodynamic Functions in a Thermo-mechanical Field: A Finitely Strained Solid ♠ 105
 3.4.4 Thermodynamic Functions in a Thermo-mechanical Field: A Fluid 108

3.5 Chemical Process and Thermodynamics 111
 3.5.1 Thermodynamic Variables in a Thermo-mechanochemical Field .. 111
 3.5.2 Thermodynamic Functions in a Thermo-mechanochemical Field: A Small Strain Solid 113
 3.5.3 Thermodynamic Functions in a Thermo-mechanochemical Field: A Finitely Strained Solid ♠ 118
 3.5.4 Thermodynamic Functions in a Thermo-mechanochemical Field: A Fluid 121

3.6 Mixture Theory for a Multi-component Solution 122
 3.6.1 Mass Conservation Law .. 124
 3.6.2 Conservations of Linear Momentum and Moment of Momentum .. 128
 3.6.3 First Law of Thermodynamics in a Thermo-mechanochemical Continuum: Conservation of Energy .. 130
 3.6.4 Entropy Inequality in a Thermo-mechanochemical Continuum .. 132

3.7 Thermodynamics Laws and Constitutive Theory ♠ 133
 3.7.1 Constitutive Theory of a Solid with Chemical Processes in the Small Strain Field 134

3.8 Summary of the Framework of Non-equilibrium Thermodynamics ♠ .. 135

4 Virtual Work Equation, Variational Methods and Energy Principles .. 139
 4.1 Variational Method for a One-dimensional Elastic Problem 139
 4.1.1 Strong Form .. 139
 4.1.2 Weak Form and the Virtual Work Equation 140
 4.1.3 Principle of the Energy Minimization and a Variational Method .. 141
4.2 Variational Method for a Three-dimensional Elasticity Problem .. 143
 4.2.1 Strong Form ... 143
 4.2.2 Weak Form and the Virtual Work Equation 144
 4.2.3 Principle of the Energy Minimization and a Variational Method ... 145
4.3 The Penalty Method and the Lagrangian Multiplier Method 145
4.4 Convolution Integral and Energy Forms for Parabolic and Hyperbolic PDEs .. 147
 4.4.1 Energy Form of a Parabolic PDE 149
 4.4.2 Energy Form of a Hyperbolic PDE 150
4.5 Interpolation, Approximation and Galerkin Method 151
5 Classical Theory of Diffusion and Seepage Problems in Porous Media .. 157
 5.1 Representative Elementary Volume and Averaging 157
 5.2 Diffusion and Seepage Problem for a Multi-component Solution in Saturated Porous Media 159
 5.2.1 Mass Conservation for the Fluid Phase 160
 5.2.2 Mass Conservation in the Solid Phase 163
 5.2.3 Seepage Theory for the Incompressible Fluid 166
 5.2.4 Seepage Theory for the Compressible Fluid 169
 5.3 Navier-Stokes Equation and the Classical Permeability Theory ... 169
 5.3.1 Pipe Flow: Hagen-Poiseulle Flow 170
 5.3.2 Flow Through an Assembly of Pipes and Its ‘Permeability’ ... 172
 5.3.3 Flow in a Tank Filled with Solid Particles and Its Permeability ... 173
 5.4 Fick’s Law and Evaluation of the Diffusion Coefficient 174
 5.5 Adsorption Isotherm and the Distribution Coefficient............ 177
 5.5.1 Langmuir’s Equilibrium Adsorption Isotherm 178
 5.5.2 Freundlich’s Equilibrium Adsorption Isotherm 181
 5.5.3 Temkin’s Equilibrium Adsorption Isotherm 181
 5.5.4 Langmuir’s Nonequilibrium Adsorption Isotherm ... 182
 5.5.5 Freundlich’s Nonequilibrium Adsorption Isotherm ... 182
 5.6 Transport Equations and Similitude Laws 182
6 Classical Theory of Consolidation for Saturated Porous Media 185
 6.1 Mass Conservation Law and Seepage Equation 185
 6.2 Conservation of Linear Momentum, Effective Stress and Biot’s Consolidation Theory 186
 6.3 Finite Strain Theory of Consolidation 187
 6.3.1 Seepage Equation of Consolidation in a Lagrangian Form .. 188
 6.3.2 Lagrangian Equation of Equilibrium 189
 6.3.3 Incremental Form of the Equation of Equilibrium 190
6.4 A Weak Form of Biot’s Consolidation Equations
 and Finite Element Analysis .. 191
 6.4.1 Strong Form .. 191
 6.4.2 Weak Form .. 192
 6.4.3 Finite Element Analysis 193
6.5 The Cam Clay Model .. 196
 6.5.1 Normally Consolidated Clay 196
 6.5.2 Over-consolidated Clay 197
 6.5.3 The Original Cam Clay Model 198
 6.5.4 Modified Cam Clay Model 204
 6.5.5 Elasto-plastic Constitutive Law 205

7 Introduction to Homogenization Analysis 207
 7.1 One-dimensional Problem of an Elastic Bar 207
 7.2 Micro/Macro Coordinates 207
 7.3 Microscale and Macroscale Problems 208

8 Homogenization Analysis and Permeability of Porous Media 213
 8.1 Micro-inhomogeneous Porous Media and Stokes’ Equation 214
 8.2 Seepage Theory for Two-scale Porous Media 214
 8.2.1 Homogenization Analysis and Seepage Problem of Porous Media 215
 8.2.2 Analytical Solution for a Microscale Poiseulle Flow 219
 8.2.3 Finite Element Analysis for the Mass Conservation Equation in the Micro-domain 220
 8.2.4 Numerical Results of Seepage Analysis for Pure Smectitic Clay 223
 8.2.5 Three-dimensional Seepage Analysis of Sand 227
 8.3 A Permeability Theory for Multiscale Porous Media 230
 8.3.1 Multiscale Permeability Theory 231
 8.3.2 Seepage Analysis of Bentonite 238

9 Homogenization Analysis of Diffusion in Porous Media 241
 9.1 Micro-inhomogeneous Porous Media and Diffusion Problems ... 241
 9.2 Diffusion Theory for Two-scale Porous Media 244
 9.2.1 HA for Diffusion Problems in Porous Media 244
 9.2.2 Simulation of a Through-diffusion Test 248
 9.2.3 HA Diffusion Equation with Higher Order Derivatives 250
 9.3 Diffusion Problem for Multiscale Porous Media 253
 9.3.1 Multiscale HA for Diffusion Problems in Porous Media 253
 9.4 Diffusivity of Compacted Bentonite Considering Micro-structure 257
 9.4.1 Experimental Data of Bentonite Diffusivity 257
 9.4.2 Microscale Problem of HA for Bentonite 259
 9.5 HA and Similitude for the Seepage/Diffusion Problem 264
10 Long-Term Consolidation of Bentonite and a Homogenization Analysis of the Flow Field

10.1 Long-term Consolidation Test on Bentonite

10.2 MD/HA Seepage Analysis and 1D Consolidation Theory

10.2.1 1D Finite Strain Consolidation Theory

10.2.2 Weak Form of the 1D Finite Strain Consolidation Equation

10.2.3 FEM for 1D Finite Strain Consolidation Equation

10.2.4 Relation Between Permeability and Void Ratio for Compacted Bentonite

10.2.5 Consolidation Experiment and Inhomogeneous 1D Analysis

A Introduction to Vectors

A.1 Vectors in \(\mathbb{R}^3 \)

A.2 Inner Product and the Length of Vectors

A.3 Coordinate Transformation

A.4 Outer Product

B Partial Differentiation and Integral Theorems

B.1 Calculus of Partial Differentials

B.2 Gauss-Green Theorem

B.3 Stokes’ Theorem and Exact Differentiability

C A Summary of Linear Vector Spaces

C.1 Algebraic System

C.2 A Linear Vector Space \(\mathcal{V} = \{ X, +, \cdot \} \)

C.3 Basis and Dimension

C.4 Topological Spaces

C.5 Cauchy Sequence and Complete Space

C.6 Functionals and Dual Space

C.7 Tensor Product and Tensor Space

C.8 On Completeness of Function Spaces

C.8.1 Sequence Space \(l^p \)

C.8.2 Completeness of \(l^p \)

C.8.3 Completeness of \(C[a, b] \) Under the Norm \(\| x \|_\infty \)

C.8.4 Bessel’s Inequality and Parseval’s Equality

C.8.5 Completeness of Fourier Basis \(\{ \phi_n \} \)

D Classical and Chemical Thermodynamics

D.1 Energy Conservation Law and Thermodynamic Systems

D.2 Existence of Entropy and Thermal Energy: First Part of the Second Law of Thermodynamics

D.2.1 Carnot Cycle

D.2.2 Entropy as a State Variable
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.3</td>
<td>Interpretation of Entropy within the Framework of Statistical Thermodynamics: Boltzmann’s Theory</td>
<td>323</td>
</tr>
<tr>
<td>D.3.1</td>
<td>Statistical Representation of Molecular States and Boltzmann Distribution</td>
<td>324</td>
</tr>
<tr>
<td>D.3.2</td>
<td>Molecular Partition Function q</td>
<td>325</td>
</tr>
<tr>
<td>D.3.3</td>
<td>Internal Energy and Entropy: Boltzmann’s Formula</td>
<td>327</td>
</tr>
<tr>
<td>D.4</td>
<td>Entropy Production: Second Part of the Second Law of Thermodynamics</td>
<td>331</td>
</tr>
<tr>
<td>D.4.1</td>
<td>Second Law of Thermodynamics for the Irreversible Process</td>
<td>331</td>
</tr>
<tr>
<td>D.4.2</td>
<td>Entropy Production</td>
<td>332</td>
</tr>
<tr>
<td>D.4.3</td>
<td>Second Law of Thermodynamics and the Minimum Energy Principle</td>
<td>336</td>
</tr>
<tr>
<td>D.4.4</td>
<td>Second Law of Thermodynamics in a Thermo-mechanical Continuum: Eulerian Description</td>
<td>336</td>
</tr>
<tr>
<td>E</td>
<td>Chemical Processes and Classical Thermodynamics</td>
<td>339</td>
</tr>
<tr>
<td>E.1</td>
<td>Molar Description of Thermodynamic Functions</td>
<td>339</td>
</tr>
<tr>
<td>E.2</td>
<td>Heat of Reaction and Change of Enthalpy</td>
<td>342</td>
</tr>
<tr>
<td>E.3</td>
<td>Change of Entropy</td>
<td>345</td>
</tr>
<tr>
<td>E.3.1</td>
<td>Progress of Chemical Reaction and Change of Entropy</td>
<td>345</td>
</tr>
<tr>
<td>E.3.2</td>
<td>Affinity and Direction of Reaction</td>
<td>346</td>
</tr>
<tr>
<td>E.3.3</td>
<td>Change of Entropy and the Diffusion Process</td>
<td>348</td>
</tr>
<tr>
<td>E.3.4</td>
<td>Changes of Temperature/Pressure/Phase and Entropy</td>
<td>348</td>
</tr>
<tr>
<td>E.4</td>
<td>Change of Gibbs Free Energy and Chemical Potential</td>
<td>350</td>
</tr>
<tr>
<td>E.5</td>
<td>Thermodynamics of Gas</td>
<td>351</td>
</tr>
<tr>
<td>E.6</td>
<td>Diffusion Behavior of Solutions without Inter-molecular Interaction</td>
<td>353</td>
</tr>
<tr>
<td>E.6.1</td>
<td>Chemical Potential</td>
<td>353</td>
</tr>
<tr>
<td>E.6.2</td>
<td>Diffusion Coefficient in an Ideal Solution: Stokes–Einstein Equation</td>
<td>354</td>
</tr>
<tr>
<td>E.6.3</td>
<td>Diffusion Coefficient of Solute without Inter-molecular Interaction</td>
<td>355</td>
</tr>
<tr>
<td>E.7</td>
<td>Diffusion Process in an Electrolyte Solution</td>
<td>356</td>
</tr>
<tr>
<td>E.7.1</td>
<td>Chemical Potential of Electrolyte Solute</td>
<td>356</td>
</tr>
<tr>
<td>E.7.2</td>
<td>Electrostatic Field due to Distributed Ions and Activity Coefficient: Debye–Hückel Theory</td>
<td>358</td>
</tr>
<tr>
<td>E.7.3</td>
<td>Diffusion of Ionic Species in an Electrolyte Solution</td>
<td>361</td>
</tr>
<tr>
<td>E.7.4</td>
<td>Electric Conduction in an Electrolyte Solution</td>
<td>362</td>
</tr>
<tr>
<td>E.8</td>
<td>Chemical Equilibrium and the Equilibrium Constant</td>
<td>364</td>
</tr>
<tr>
<td>E.9</td>
<td>Phenomenological Theory of Non-equilibrium Chemical Reaction Processes</td>
<td>366</td>
</tr>
<tr>
<td>E.9.1</td>
<td>Reaction Velocity and Order of Reaction</td>
<td>366</td>
</tr>
<tr>
<td>E.9.2</td>
<td>Elementary Reaction and Complex Reaction</td>
<td>367</td>
</tr>
</tbody>
</table>
E.9.3 Temperature Dependence of Reaction Rate:
Arrhenius Equation ... 370
E.9.4 Transition State Theory 371

References .. 373
Index ... 379
Transport Phenomena in Porous Media
Aspects of Micro/Macro Behaviour
Ichikawa, Y.; Selvadurai, A.P.S.
2012, XXIV, 384 p., Hardcover
ISBN: 978-3-642-25332-4