Table of Contents

Principles of TRIZ

1 Introduction

1.1 On Creative Discipline and Standardization of Knowledge
 1.1.1 Learn or Re-learn? 1
 1.1.2 About Modern TRIZ 2
 1.1.3 Standardization of Education 5
 1.1.4 Modern TRIZ herbie! 10
1.2 What is an "Inventive Problem"? 12
1.3 EASyTRIZ: Constructive Learning Technology of Modern TRIZ 17

2 Original Concepts

2.1 Contradiction
 2.1.1 Definition of Inventive Problem 23
 2.1.2 General Contradiction 24
 2.1.3 Standard Contradiction 27
 2.1.4 Radical Contradiction 32
2.2 Transformations
 2.2.1 Transformations Pyramid 38
 2.2.2 Specialized Transformations 39
2.3 Operative Zone
2.4 Invention

3 Red Thread of Victory

3.1 Algorithms of Inventive Creativity 55
3.2 Noospheric Modeling Concept in Modern TRIZ 66
3.3 The Big Through the Small 76
3.4 The Unbelievable in the Routine 83
3.5 The Impossible Is Possible 90
3.6 The Invisible in the Apparent 96
3.7 History of Bicycle Evolution 100
Primary TRIZ Models 124

4 Extracting: Identification of TRIZ Models 124
 4.1 Extracting the Transformation Models 124
 4.2 Extracting the Contradictions 135

5 Operating Resources: Build the Solution Thus and Here! 139
 5.1 Inductors and Receptors 139
 5.2 Resource Modeling 143
 5.3 Targeted Ideal Modeling 150
 5.3.1 Ideal Final Result According to Bartini 150
 5.3.2 Functional Ideal Modeling 158
 5.4 OZ Transformation Scheme 170

6 Reinventing: TRIZ-Modeling the Invention Process 172
 6.1 Reinventing 172
 6.2 Prototype-artifact and Product-artifact 179
 6.3 Algorithm START T-R-I-Z 182

7 To Defeat a Contradiction: Generation of Efficient Ideas 188
 7.1 Resolution of Standard Contradictions 188
 7.2 Resolution of Radical Contradictions 200

Advanced Primary TRIZ Models 219

8 Integrated TRIZ Models 219
 8.1 Extended Classification of Contradictions 219
 8.2 Resolution of Ordinary Contradictions 224
 8.3 Resolution of Compositional Contradictions 233
 8.4 Cycles and Branches in Problem Solving 240
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>System Evolution Models</td>
<td>245</td>
</tr>
<tr>
<td>9.1</td>
<td>Four Attributes of a Problem</td>
<td>245</td>
</tr>
<tr>
<td>9.2</td>
<td>Negative and Positive Systems</td>
<td>246</td>
</tr>
<tr>
<td>9.3</td>
<td>Evolution of System Classes</td>
<td>249</td>
</tr>
<tr>
<td>9.4</td>
<td>DISC Meta-Model</td>
<td>257</td>
</tr>
<tr>
<td>10</td>
<td>EASyTRIZ Training Baseline</td>
<td>269</td>
</tr>
<tr>
<td>10.1</td>
<td>EASyTRIZ Instrumental Software</td>
<td>269</td>
</tr>
<tr>
<td>10.2</td>
<td>Distance Training Technology</td>
<td>274</td>
</tr>
<tr>
<td>11</td>
<td>Energy of Progress</td>
<td>276</td>
</tr>
<tr>
<td>11.1</td>
<td>On the Way to a New Innovation and Invention Theory</td>
<td>276</td>
</tr>
<tr>
<td>11.2</td>
<td>Opel, VW and Others: "Masses VS Elite"</td>
<td>278</td>
</tr>
<tr>
<td>11.3</td>
<td>Inventive Ideas Pool</td>
<td>281</td>
</tr>
<tr>
<td>12</td>
<td>Reinventing of Automobile Production Systems Evolution</td>
<td>286</td>
</tr>
<tr>
<td>12.1</td>
<td>From Craft Production to Mass Production System</td>
<td>286</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Interchangeability of Parts</td>
<td>286</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Dedicated Machine Tools</td>
<td>291</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Design Simplification</td>
<td>296</td>
</tr>
<tr>
<td>12.1.4</td>
<td>Delivery of Parts</td>
<td>301</td>
</tr>
<tr>
<td>12.1.5</td>
<td>Division of Assembly Line</td>
<td>305</td>
</tr>
<tr>
<td>12.1.6</td>
<td>Moving Assembly Line</td>
<td>310</td>
</tr>
<tr>
<td>12.2</td>
<td>From Mass Production to Lean Production System</td>
<td>315</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Quick Changeover</td>
<td>315</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Continuous Flow</td>
<td>320</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Production Leveling</td>
<td>326</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Poka-yoke</td>
<td>330</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Andon System</td>
<td>335</td>
</tr>
<tr>
<td>12.2.6</td>
<td>Just-in-Time</td>
<td>339</td>
</tr>
</tbody>
</table>
Table of Contents

13 Selected Examples

- 13.1 The Super-Task of Learning and Self-Training in EASYTRIZ 346
- 13.2 Inventions. People. Society
 - 13.2.1 "Checkered" Ideas 354
 - 13.2.2 Benchmark Examples: Kremlin Stars 372
 - 13.2.3 Mysteries of the Three Elements: Water, Air, Space 376
 - 13.2.4 Steps of Evolution 410

14 Reference Materials

- 14.1 A-matrix
 - 14.1.1 Plus- and Minus-factors 423
 - 14.1.2 A-matrix table 424
- 14.2 A-catalogs (short reference versions)
 - 14.2.1 40 primary transformation models (navigators) 427
 - 14.2.2 As-catalog 428
 - 14.2.3 Af-catalog (simplified) 436
 - 14.2.4 Afs-catalog (simplified) 437
 - 14.2.5 Advanced Af-catalog "Conditions – Function" 438
 - 14.2.6 Advanced Af-catalog "Function – Purpose" 439
 - 14.2.7 Table for the SITO-plus method 440
 - 14.2.8 Table for the SITO-minus method 441
- 14.3 List of the Examples 442
- 14.4 Terms and abbreviations 447
- 14.5 Sources of illustrations 449
- 14.6 Selected web-sites 449
Modern TRIZ
A Practical Course with EASYTRIZ Technology
Orloff, M.A.
2012, XVI, 449 p. 456 illus., Softcover
ISBN: 978-3-642-25217-4