Contents

1 General Introduction 1
 References ... 4

2 Electron Paramagnetic Resonance Theory 7
 2.1 Historical Review 7
 2.2 EPR Fundamentals. 8
 2.2.1 Preface 8
 2.2.2 Resonance Phenomenon. 9
 2.2.3 Magnetization. 10
 2.2.4 Bloch Equations 11
 2.2.5 Continuous Microwave Irradiation 12
 2.3 Types of Interactions and Spin Hamiltonian 14
 2.3.1 Electron Zeeman Interaction 15
 2.3.2 Nuclear Zeeman Interaction 16
 2.3.3 Hyperfine Interaction 16
 2.3.4 Nuclear Quadrupole Interaction 17
 2.3.5 Nuclear Spin–Spin Interaction 18
 2.3.6 Zero-Field Splitting 18
 2.3.7 Weak Coupling Between Electron Spins 18
 2.4 Anisotropy in EPR Spectra 20
 2.4.1 g Anisotropy 20
 2.4.2 Combined Anisotropies in Real Spectra 22
 2.5 Dynamic Exchange 23
 2.6 Nitroxides as Spin Probes 26
 2.6.1 Spin Probe Versus Spin Label 27
 2.6.2 Quantum Mechanical Description 27
 2.6.3 Nitroxide Dynamics 28
 2.6.4 Environmental Influences 30
 2.7 CW Spectral Analysis via Simulations 31
 2.8 Time Evolution of Spin Ensembles 33
4.3 Influence of the Molecular Structure on the Metal Ion Complexation

4.3.1 Fluorescence Quenching of T3b

4.3.2 Copper Coordination in T3b.

4.3.3 Influence of a Fourth Cholic Acid Arm

4.3.4 Observation of a Fourth Species in a 2:1 Mixture of CuCl₂ and Q8tb

4.3.5 Summary

4.4 Self-Assembly of Monomeric Cholic Acid Derivatives

4.4.1 Cu²⁺ Coordination by S2

4.4.2 Cu²⁺ Mediated Spatial Assembly of Single Cholic Acid Chains

4.5 Conclusions

4.6 Materials and Methods

References

5 Nano-Inhomogeneities in Structure and Reactivity of Thermoresponsive Hydrogels

5.1 Introduction

5.2 Results

5.2.1 The Temperature Induced Hydrogel Collapse as Seen by Probe Molecules

5.2.2 Chemical Decomposition of Spin Probes in Hydrophilic Regions of the Hydrogel

5.3 Discussion

5.3.1 The Hydrogel Collapse on a Molecular Level

5.3.2 Hydrogel Inhomogeneities on the Nanoscale Lead to Nanoreactors and Nanoshelters

5.3.3 Nanoreactors With Localized Acid Groups

5.4 Conclusions

5.5 Materials and Methods

References

6 Thermoresponsive Spin-Labeled Hydrogels as Separable DNP Polarizing Agents

6.1 Introduction

6.2 Theory of Overhauser DNP

6.3 Results and Discussion

6.3.1 Strategy for the Preparation of Thermoresponsive Spin-Labeled Hydrogels

6.3.2 CW EPR Characterization of the Spin-Labeled Hydrogels

6.3.3 Characteristic DNP Factors and ¹H Relaxation Times
Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy
J.N. Junk, M.
2012, XVI, 212 p., Hardcover
ISBN: 978-3-642-25134-4