
Chapter 2

Background

Fig. 2.1 Wolfgang von Kempelen’s speaking machine, drawing fromMechanism of Human Speech
(1791)

Mankind appears to be fascinated by the idea of talking with machines. The first
attempts to produce human speech by machine were made in the second half of the
18th century. One of the best known examples is Wolfgang von Kempelen’s speak-

_2,
© Springer-Verlag Berlin Heidelberg 2011

V. Rieser and O. Lemon, Reinforcement Learning for Adaptive Dialogue Systems
Theory and Applications of Natural Language Processing, DOI 10.1007/978-3-642-24942-6

9,

10 2 Background

ing machine, as described in his book “Mechanism of Human Speech” 1 (1791), see
Figure 2. Von Kempelen’s machine was the first that produced not only some speech
sounds, but also whole words and short sentences. Clearly, in order to converse with
a machine in natural language more than just automatic sound production is neces-
sary. Descartes even thought that it would never be possible to engage in dialogue
with machines at all. In his book “Discourse on the Method of Rightly Conducting
the Reason, and Searching for Truth in the Sciences” 2 (1637) he declares:

“. . . but if there were machines bearing the image of our bodies, and capable of imitating
our actions as far as it is morally possible, [. . .] they could never use words or other signs
arranged in such a manner as is competent to us in order to declare our thoughts to others.”

Today, however, it is arguable that such machines now exist, at least for limited
application domains, due to major advances in the field of Human-Computer Inter-
action (HCI) and Spoken Dialogue Systems (SDS) . Still, human-machine dialogue
is far from resembling the capabilities of human-human dialogue, as we discuss
below.

2.1 Human-Computer Interaction

For computers, holding a conversation is difficult. Engaging in a conversation re-
quires more than just technical language proficiency. When people engage in di-
alogue, they carry out a purposeful activity (Austin, 1962), a joint action (Clark,
1996), or a language game (Wittgenstein, 1953), which they know how to perform
using their communicative skills. Dialogue behaviour is often formally described as
a sequence of Speech Acts (SAs) (Searle, 1969). These SAs are organised into struc-
tural patterns in the field of Conversation Analysis, e.g. (Levinson, 1983; Sacks et al,
1974). Some of this behaviour follows standardised cultural conventions. For exam-
ple, the fact that people greet each other is described as the standardised SA “adja-
cency pair” greeting-greeting (Levinson, 1983). Other behaviour is highly
context-dependent. For example, in previous work we show that the way people ask
for clarification is influenced by various contextual and environmental factors, such
as dialogue type, modality, and channel quality (Rieser and Moore, 2005). In addi-
tion, people often engage in dialogue to solve a task together. Their behaviour is then
driven by the goal of the task as well as by their “mental model” (Johnson-Laird,
1983) of the other dialogue participant.
Humans acquire these communicative skills over time, but for a dialogue system,

they need to be developed by a dialogue designer. This usually is an expert who de-
fines a dialogue strategy , which “tells” the system what to do in specific situations.
The “dialogue strategy” is part of the Dialogue Manager (DM) which controls the

1 Original title: Mechanismus der menschlichen Sprache nebst Beschreibung einer sprechenden
Maschine
2 Original title: Discours de la méthode pour bien conduire sa raison, et chercher la verité dans
les sciences

2.2 Dialogue Strategy Development 11

behaviour of the system. Broadly speaking, a dialogue system has three modules,
one each for input, output, and control, as shown in Figure 2.2. The input module
commonly comprises Automatic Speech Recognition (ASR) and Spoken Language
Understanding (SLU). The control module corresponds to the Dialogue Manager,
which executes a dialogue strategy. The output module consists of a Natural Lan-
guage Generation (NLG) system and a Text-To-Speech (TTS) engine. Usually, these
modules are placed in a pipeline model (see Figure 2.2). The ASR converts the user’s
speech input (1) into text (2). SLU parses the text into a string of meaningful con-
cepts, intentions, or Speech Acts (3). The Dialogue Manager maintains an internal
state and decides what SA action to take next (4). This is what we call a dialogue
strategy. For most applications the DM is also connected to a back-end database.
In the output module, NLG renders the communicative acts (4) as text (5), and the
TTS engine converts text to audio (6) for the user. Interested readers are referred
to introductory texts such as (Bernsen et al, 1998; Huang et al, 2001; Jurafsky and
Martin, 2000; McTear, 2004).
Human-Computer Interaction (HCI) is the study of interaction between people

(users) and computers (such as dialogue systems). Human-machine dialogue dif-
fers from human-human dialogue in various ways. The most prominent features
are the lack of deep language understanding and the lack of pragmatic competence
(communicative skills) of the system. The lack of language understanding is due
to errors introduced by less-than-perfect input processing (ASR and NLU), and the
common use of shallow semantic representations. The lack of pragmatic compe-
tence is mainly due to the limited capabilities (often hand-coded heuristics) of the
control module.
A substantial amount of recent work targets the problem of limited language un-

derstanding capabilities with so-called “error handling”, e.g. (Bohus, 2007; Framp-
ton, 2008; Skantze, 2007a), or “uncertainty handling” mechanisms, e.g. (Thomson
and Young, 2010; Williams, 2006; Williams and Young, 2007a). This book ad-
dresses the problem of pragmatic competence: how to improve the communicative
skills of a system by providing effective mechanisms to develop better dialogue
strategies. In particular, this book explains how to automatically learn these skills
from experience using simulated interactions, starting with a small experimental
study of human behaviour. We now explain the conventional methods for strategy
development.

2.2 Dialogue Strategy Development

There is a wide range of techniques to develop dialogue strategies, and techniques
applied in industry are very different from the ones applied in research (Griol et al,
2010; Pieraccini and Huerta, 2005; Williams, 2008). These differences reflect the
fact that academia and industry often pursue different objectives. Academic sys-
tems often aim to emulate human behaviour in order to generate ‘natural’ behaviour,
whereas commercial systems are required to be robust interfaces in order to solve

12 2 Background

Fig. 2.2 Dialogue system architecture and processing pipeline

a specific task, see (Larsson, 2005; Pieraccini and Huerta, 2005) for further discus-
sion.
In the following we first describe the general development cycle for dialogue

strategies (which is commonly used in industry as well as in research). We then fo-
cus on two central aspects of this cycle, where techniques in research and industry
differ widely: strategy evaluation/quality control and strategy implementation/for-
malisation. We later argue for a computational learning-based approach, where the
standard development cycle is replaced by data-driven techniques.

2.2.1 Conventional Development Lifecycle

The development lifecycle for dialogue strategies is in many ways similar to the tra-
ditional software engineering approach. This type of dialogue strategy development
is used in industry as well as in research projects (Bernsen et al, 1998; McTear,
2004). The lifecycle model includes a number of sequential stages (see Figure 2.3):
requirements analysis and functional specification, design, implementation, testing
and evaluation. In practise, the concrete realisation of the individual stages varies
from system to system. Here we briefly summarise the major aspects for each stage.
In the initial planning stage, a so-called “requirements analysis” is performed:

the system designer examines the use case of the system (e.g. the role and func-
tion of a system, user profiles, usage patterns), and the language requirements
(e.g. vocabulary, grammars, interaction patterns). Sometimes an initial user survey,
e.g. (Rieser, 2003; Wang et al, 2005), or an initial Wizard-of-Oz experiment, e.g.
(Kruijff-Korbayová et al, 2005a), helps to specify further requirements. For com-
mercial systems, the client also provides a set of functional specifications.

CONTROL

INPUT

OUTPUT
User

Automatic Speech
Recognition

Natural Language
Understanding

Text-to-Speech
Natural Language

Generation

database

Dialogue
Manager

 dialogue
strategy

text SA

SAtext

speech

speech

1 2 3

456

2.2 Dialogue Strategy Development 13

Fig. 2.3 Iterative development cycle used to develop dialogue systems

In the second stage an initial strategy is designed. The dialogue is commonly
visualised using flow charts, also known as Task Hierarchical Diagrams (McTear,
2004), which describe all the possible choice points for dialogue tasks and sub-tasks
as a finite state automaton.
After the dialogue strategy is defined on paper, it is implemented into a working

dialogue system, for example using VoiceXML 3 (or other alternatives as discussed
in Subsection 2.2.3), translating the design decisions into code.
In the final stage, the strategy is tested and evaluated. So-called “black-box”

testing is frequently used to evaluate the system as a whole with reference to its
functional specification, its performance, and its user acceptance. Further details are
discussed in Subsection 2.2.2. The evaluation results and an error analysis are used
to inform strategy re-design, and the cycle starts again.
In the next two Sections we further investigate the evaluation and implementation

phase in more detail, where we compare methods used in industry with the ones used
in research.

2.2.2 Evaluation and Strategy Quality Control

2.2.2.1 Quality Control in Industry

In industry the initial design is commonly motivated by guidelines and ‘best prac-
tises’ which should help to assure the system’s usability (Paek, 2007). Various
sources exist which define standards, guidelines and recommendations on what a
“good” dialogue should be, e.g. (Balentine and Morgan, 2001; Balogh et al, 2004;
Dix et al, 1998; Dybkjaer and Bernsen, 2000; Frostad, 2003; Lamel et al, 2000;
Larson, 2003; Nass and Barve, 2005; Shneiderman, 1997; Weinschenk and Barker,
2000). However, the quality of the given advice is questionable (Paek, 2007). For

3 http://www.voicexml.org/

14 2 Background

example, the listed “do’s and don’ts” are not substantiated by rigorous experimen-
tal design, and it is also not clear how well they generalise. Furthermore the given
advice is sometimes very vague (e.g. “Reduce short term memory” (Shneiderman,
1997)), and may contradict each other (e.g. “Be brief” vs. “Avoid ambiguity”). It is
up to the designer to translate these statements into a dialogue strategy.
The final system is released into deployment if it is “good enough” as evaluated

by some metrics. For industrial applications this criterion is defined by Return-On-
Investment (ROI), which is the ratio of money gained or lost on an investment rel-
ative to the amount of money invested (Paek, 2007; Pieraccini and Huerta, 2005).
In general, the development costs for dialogue strategies are high. In particular, user
testing is time, labour, and cost intensive. Thus, extensive evaluation is often set
aside in practise. In software engineering this dilemma of insufficient testing was
first described by Sneed and Merey (1985) as the “vicious square”. According to
this theory, the overall productivity of a software project is defined by quantity,
costs, duration, and targeted quality. If costs, duration, and quantity are limited by
ROI, software quality and software testing will need to be reduced.

2.2.2.2 Evaluation Practises in Academia

Dialogue strategies developed in academia are usually extensively tested against
some baseline in order to make scientific claims, e.g. by showing some significant
differences in system behaviour. Research has exerted considerable effort and atten-
tion in devising evaluation metrics that allow for comparison of disparate systems
with varying tasks and domains: see (Paek, 2007) for an extensive survey. In the
rest of this section we discuss the PARADISE framework in more detail. While there
are many other evaluation metrics, e.g. (Hartikainen et al, 2004; Paek, 2001) etc.,
PARADISE has emerged as a “de-facto standard” (Möller et al, 2007), along with the
SASSI framework by (Hone and Graham, 2000). These two evaluation frameworks
serve different purposes. While SASSI (Subjective Assessment of Speech System In-
terfaces) is a framework for designing user questionnaires, the main purpose of PAR-
ADISE (PARAdigm for DIalogue System Evaluation) is to construct a data-driven
model for automatic dialogue evaluation.
Furthermore, the questionnaire used in the original PARADISE studies (Walker

et al, 1997, 2000) is also widely used by other subsequent dialogue studies, e.g.
(Frampton and Lemon, 2006; Hajdinjak and Mihelic, 2006; Hof et al, 2006; Lemon
et al, 2006a; Quarteroni and Manandhar, 2008). The questions used in PARADISE
target different dimensions, as listed in Table 2.1. These dimensions have been crit-
icised for being “arbitrary and based on intuition” (Paek, 2007). The SASSI frame-
work (Hone and Graham, 2000), in contrast, allows a more principled approach to
design questionnaires. In SASSI six main factors are identified which determine the
user’s perception of the dialogue. We argue that in fact the questions in PARADISE
and SASSI measure similar underlying factors/ dimensions. For a direct comparison
see Table 2.1.
In the next Subsection we describe the PARADISE framework in more detail.

2.2 Dialogue Strategy Development 15

S
A
S
S
I

PA
R
A
D
IS
E

S
y

st
em

R
es

p
o

n
se

A
cc

u
ra

cy
:U
se
r’
s
pe
rc
ep
tio
ns
of
th
e
sy
st
em

as
ac
cu
-

ra
te
an
d
do
in
g
w
ha
tt
he
y
ex
pe
ct
.

E
x

p
ec

te
d

B
eh

a
v

io
u

r:
D
id
th
e
sy
st
em

w
or
k
th
e
w
ay
yo
u
ex
pe
ct
ed
it
to

in
th
is
co
nv
er
sa
tio
n?
;

A
S

R
p

er
fo

rm
a

n
ce
In
th
is
co
nv
er
sa
tio
n,
di
d
th
e
sy
st
em

un
de
rs
ta
nd
w
ha
t

yo
u
sa
id
?

L
ik

ea
b

il
it

y
:U
se
r’
s
ra
tin
g
of
th
e
sy
st
em

as
us
ef
ul
,p
le
as
an
tf
ri
en
dl
y.

C
o

m
p

a
ra

b
le

In
te

rf
a

ce
:
In
th
is
co
nv
er
sa
tio
n,
ho
w
di
d
th
e
sy
st
em
’s

vo
ic
e
in
te
rf
ac
e
co
m
pa
re

[to
ot
he
rs
ys
te
m
s]
?;

F
u

tu
re

U
se
:F
ro
m
yo
ur
cu
rr
en
te
xp
er
ie
nc
e
w
ith

us
in
g
th
e
sy
st
em

[..
.],

do
yo
u
th
in
k
yo
u’
d
us
e
th
e
sy
st
em

re
gu
la
rl
y
[..
.]

C
o

g
n

it
iv

e
D

em
a

n
d
:T
he
pe
rc
ei
ve
d
am
ou
nt
of
ef
fo
rt
ne
ed
ed
to
in
te
ra
ct

w
ith
th
e
sy
st
em

an
d
fe
el
in
gs
ar
is
in
g
fr
om

th
is
ef
fo
rt
.

T
a

sk
E

a
se
:I
n
th
is
co
nv
er
sa
tio
n,
w
as
it
ea
sy
to
fin
d
th
e
in
fo
rm
at
io
n
yo
u

w
an
te
d?
;

T
T

S
p

er
fo

rm
a

n
ce
:W

as
th
e
sy
st
em

ea
sy
to
un
de
rs
ta
nd
in
th
is
co
nv
er
-

sa
tio
n?

A
n

n
o

y
a

n
ce
:U
se
r’
s
ra
tin
g
of
th
e
sy
st
em

as
re
pe
tit
iv
e,
bo
ri
ng
,i
rr
ita
tin
g

an
d
fr
us
tr
at
in
g.

S
y

st
em

R
es

p
o

n
se
:H
ow

of
te
n
w
as
th
e
sy
st
em

sl
ug
gi
sh
an
d
sl
ow

to
re
pl
y

to
yo
u
in
th
is
co
nv
er
sa
tio
n?

H
a

b
it

a
b

il
it

y
:T
he
ex
te
nt
to
w
hi
ch
us
er
s
kn
ew

w
ha
tt
o
do
an
d
w
ha
tt
he

sy
st
em

w
as
do
in
g.

U
se

r
E

x
p

er
ti

se
:I
n
th
is
co
nv
er
sa
tio
n,
di
d
yo
u
kn
ow

w
ha
ty
ou
co
ul
d
sa
y

at
ea
ch
po
in
to
ft
he
di
al
og
ue
?

S
p

ee
d
:H
ow

qu
ic
kl
y
th
e
sy
st
em

re
sp
on
de
d
to
us
er
in
pu
ts
.

In
te

ra
ct

io
n

P
a

ce
:W

as
th
e
pa
ce
of
in
te
ra
ct
io
n
ap
pr
op
ri
at
e
in
th
is
co
n-

ve
rs
at
io
n?

T
a

b
le

2
.1
C
om
pa
ri
so
n
of
di
m
en
si
on
s
fo
ru
se
rs
at
is
fa
ct
io
n
ac
co
rd
in
g
to
th
e
S
A
S
S
I
an
d
PA
R
A
D
IS
E
qu
es
tio
nn
ai
re
s

16 2 Background

2.2.2.3 The PARADISE Evaluation Framework

PARADISE is a widely used framework for automatic dialogue evaluation introduced
by (Walker et al, 1997, 1998b, 2000). The main idea behind PARADISE is to esti-
mate subjective user ratings (obtained from questionnaires) from objective dialogue
performance measures (such as dialogue length) which are available at system run-
time. (Walker et al, 1997) propose to model “User Satisfaction” (US) using multiple
linear regression (see Equation 2.1). User Satisfaction is calculated as the arithmetic
mean of nine user judgements related to different quality aspects (see Table 2.1),
which are rated on Likert scales . A likert scale is a discrete rating scale where the
subject indicates his/her level of agreement with a statement (e.g. from “strongly
agree” to “strongly disagree”).
The input to the regression analysis consists of two main constituents: A param-

eter related to task success (either the coefficient κ calculated from an external an-
notation of correctly identified concepts, or a direct user judgment on perceived task
success), and of additional interaction parameters measuring dialogue efficiency and
quality Ci. These parameters can include runtime features such as the dialogue du-
ration, the number of system and user turns, a mean recognition score, as well as
the number of time-out prompts, barge-ins, recogniser rejections, help requests and
cancel attempts by the user, and so on (see (Möller, 2005b) for a discussion of other
possible runtime features). The multivariate linear regression analysis is carried out
with the input parameters κ and Ci as the independent (predictive) variables, and
the mean user judgment US as the dependent (target) variable. The regression de-
termines the weighting coefficients α and wi, of the linear prediction function as in
Equation 2.1, where N(·) is a normalisation function.

US︸︷︷︸
sub jective

= α ×N(κ)−
n

∑
i=1

wi ×N(Ci)︸ ︷︷ ︸
ob jective

(2.1)

The major strength of this framework is that the resulting model can be used to
predict subjective user ratings automatically from objective runtime features. Once
the PARADISE regression model is determined from data by a user study, the ex-
pected User Satisfaction for all future dialogues generated by the system can be
calculated automatically.

2.2.2.4 Strategy Re-Implementation

After testing and evaluation, an error analysis is performed and the results are then
used to re-design the strategy. However, there is no framework which describes how
evaluation results are best transferred into code. For example, the three features that
consistently appeared among the top predictive factors for the PARADISE model
are mean recognition score, task completion, and the percentage of recognition re-
jections, e.g. (Möller et al, 2007; Skantze, 2005; Walker et al, 2000; Williams and

2.2 Dialogue Strategy Development 17

Young, 2004a). Unfortunately, this is not the kind of insight which leads to improved
strategies, as most system designers probably already know that improving speech
recognition (either in absolute terms or by user perception) improves user satisfac-
tion. The question therefore remains how strategy evaluation can directly lead to
improved strategies.

2.2.3 Strategy Implementation

There are many different ways in which a dialogue strategy can be implemented.
The approaches listed in Table 2.2 do not represent an exhaustive list of the tech-
niques available.4 It does however, give some idea of the wide range of the possible
frameworks available. The interested reader is referred to the references in Table
2.2.

2.2.3.1 Implementation Practises in Industry

Most commercial systems rely on Finite State Automata (FSA) controlled by menus,
forms, or frames.5 The most common applications are form filling dialogues, in-
formation retrieval, transactions and services (Pieraccini and Huerta, 2005). Using
the finite-state model, dialogue strategies can be rapidly prototyped, tested and de-
bugged. Furthermore, FSAs are useful for small, well-defined tasks, and in situations
where speech recognition performance may be relatively low (e.g. over a telephone
line) as they allow small sub-grammars to be defined which facilitate robust recog-
nition (e.g. digit recognition).
However, this development methodology is limited by the fact that every change

in the conversation must be explicitly represented by a transition between two nodes
in the network. Dialogue strategies designed as FSA are based on hand-crafted rules
which usually lack context-sensitive behaviour, are not very flexible, cannot handle
unseen situations, and are not reusable from task to task. Furthermore, FSA easily
become intractable for more complex tasks and cannot model complex reasoning.

4 Note that there is no agreed typology for classifying dialogue strategy implementations. The one
used in this book follows Lemon (2006); McTear (2004).
5 Note that this is not an absolute classification. There are also research systems which use FSA,
e.g. (Alexandersson and Reithinger, 1995; Okamoto et al, 2001; Rieser, 2003).

18 2 Background

D
om
ai
ns

A
rc
hi
te
ct
ur
es
an
d
To
ol
s

D
ia
lo
gu
e
co
nt
ro
l

Fo
rm

fil
lin

g
e.
g.
tr
ai
n
in
fo
rm
at
io
n
sy
st
em

(A
us
t
et
al
,
19
95
),
fli
gh
t

bo
ok
in
g

C
O
M
M
U
N
IC
A
T
O
R
sy
st
em
s
(B
en
ne
tt
an
d
R
ud
-

ni
ck
y,
20
02
)

In
fo

rm
at

io
n

se
ek

in
g

e.
g.
m
us
ic
se
ar
ch
(V
ar
ge
s
et
al
,2
00
6)

P
ro

bl
em

-s
ol

vi
ng

e.
g.
T
R
IP
S/
T
R
A
IN
S
(A
lle
n
an
d
Fe
rg
us
on
,2
00
2)

Tu
to

ri
al

an
d

ed
uc

at
io

na
ld

ia
lo

gu
e

e.
g.
(L
itm
an
,2
00
2;
Po
n-
B
ar
ry
et
al
,2
00
4)

In
te

lli
ge

nt
as

si
st

an
ts

e.
g.
C
O
M
PA
N
IO
N
S
pr
oj
ec
t(
B
en
yo
n
an
d
M
iv
al
,2
00
7)

Fi
ni

te
St

at
e

Au
to

m
at

on
e.
g.
Vo
ic
eX
M
L
,C
SL
U
to
ol
ki
t

In
fo

rm
at

io
n

St
at

e
U

pd
at

e
e.
g.

T
R
IN
D
IK
IT

(L
ar
ss
on

an
d
Tr
au
m
,
20
00
),

D
IP
PE
R
(B
os
et
al
,
20
02
),
D
U
D
E
(L
em
on

an
d

L
iu
,2
00
6)

B
D

Ia
ge

nt
s

e.
g.
C
O
L
L
A
G
E
N
(R
ic
h
an
d
Si
dn
er
,1
99
8)

m
en

us
,f

or
m

s,
fr

am
es

e.
g.
(W
an
g
et
al
,2
00
5)

tr
ee

su
b-

st
ru

ct
ur

es
e.
g.
ta
sk
ag
en
da
(X
u
an
d
R
ud
ni
ck
y,
20
00
),
ac
tiv
ity

tr
ee
s
(L
em
on
et
al
,2
00
1)

lo
gi

ca
li

nf
er

en
ce

e.
g.
(G
ro
sz
an
d
Si
dn
er
,1
98
6)
,(
A
lle
n
an
d
L
itm
an
,

19
87
),
(S
ad
ek
et
al
,
19
96
),
(B
la
yl
oc
k
an
d
A
lle
n,

20
05
),
(S
te
ed
m
an
an
d
Pe
tr
ic
k,
20
07
)

T
a

b
le

2
.2
Fr
am
ew
or
ks
co
nv
en
tio
na
lly
us
ed
fo
rd
ia
lo
gu
e
st
ra
te
gy
de
ve
lo
pm
en
t

2.2 Dialogue Strategy Development 19

2.2.3.2 Implementation Practises in Academia

Most research systems to date have been based either on planning with logical in-
ference, e.g. (Blaylock and Allen, 2005; Steedman and Petrick, 2007), or they are
implemented in the “Information State Update” (ISU) approach using frames or
tree sub-structures as control mechanism, e.g. (Larsson and Traum, 2000; Lemon
et al, 2001). More recently, statistical systems using machine learning approaches
have become more prevalent, for example (Griol et al, 2008; Henderson et al,
2008; Thomson and Young, 2010; Young et al, 2007, 2009), and see (Frampton
and Lemon, 2009) for a survey.
Planning approaches are mostly used for complex tasks, like collaborative prob-

lem solving, intelligent assistants, and tutorial dialogues. ISU-based systems are
used for a variety of applications with different complexity (see Table 2.2 for refer-
ences). Both approaches have an higher expressive power than simple FSA, and can
lead to more sophisticated (e.g. context-dependent) strategies. On the other hand,
these systems are harder to maintain and debug. Building these types of systems
requires (linguistic) expert knowledge, and the encoded strategy has to be manu-
ally tailored to a specific application and is not reusable. Furthermore, hand-tuning
these complex strategies requires specialised knowledge of linguistic representation.
Hand-tuning a simple FSA (as used in industry) only requires software engineering
skills. Hence, the dialogue frameworks developed in research are often too costly
to be applied commercially, though see (Griol et al, 2010; Pieraccini et al, 2009;
Williams, 2008) for recent discussions of the use of statistical approaches in indus-
try.

2.2.4 Challenges for Strategy Development

How can this chasm be bridged? Is there a third option which can meet the chal-
lenges for both cost-effective industrial speech interfaces and the advanced dialogue
agents of academic research? What requirements does it have to meet?
In the following we discuss why standard techniques are not suited to meet the

future challenges described in Zue (2007). Zue calls the dialogue system of the
future an “organic interface”, that can learn, grow, re-congure, and repair itself.
First, good strategies have to be more robust towards unseen events (Zue, 2007).

The techniques outlined above require the manual specification of rules which define
an action for all possible dialogue situations. Exhaustive enumeration, encoding, and
maintenance of strategies becomes increasingly complex with growing complexity
of the application. It is not practically possible for the designer to anticipate all the
possible situations of a dynamic environment. Thus, “organic” interfaces will need
a strategy which is able to generalise to unseen events.
Second, good strategies should be context sensitive (Zue, 2007). Most current

strategies make use of hand-coded thresholds in order to react to changes in the
context. For example, thresholds are used to make strategies sensitive to the number

20 2 Background

of retrieved database items, e.g. (Varges et al, 2006), or to the confidence scores
returned from ASR, e.g. (Bohus and Rudnicky, 2005b). Most of the time, these
thresholds stay fixed the whole dialogue. For strategies to be truly context-sensitive
the thresholds would need to be re-defined in each context – a task which becomes
increasingly complex, especially if multiple thresholds are applied. In addition,
these thresholds have to be redefined in the same costly manner when the system is
transferred to another application environment. Thus, while current threshold-based
strategies are usually only crudely adapted to an overall state, “organic interfaces”
should dynamically adapt to every possible system context.
Third, good strategies need to more adaptive to the application environment (Zue,

2007). For example, the dialogue should be adaptive to channel noise, different user
behaviour, user preferences and user types. In order to design adaptive strategies the
system developer has to foresee the requirements of the respective conditions and
manually specify according strategies. Ideally, “organic interfaces” would be able
to automatically adapt to different situations.
Therefore, Zue (2007) concludes that “organic interfaces” will be new interfaces

which implement strategies which automatically learn adaptive behaviour, in con-
trast to the static standard techniques described in Section 2.2.3 above.
Current research has turned to automated dialogue strategy learning using sta-

tistical machine learning techniques, e.g. (Henderson et al, 2008; Levin and Pier-
accini, 1997; Rieser and Lemon, 2011; Thomson and Young, 2010; Williams and
Young, 2007a; Young, 2000) These techniques overcome many of the deficits of
the conventional methods, such as a data-driven development cycle, a precise math-
ematical model for optimisation, possibilities for generalisation to unseen states,
and reduced development and deployment costs for industry (Lemon and Pietquin,
2007).6 However, statistical learning techniques for dialogue strategies, especially
Reinforcement Learning, are also criticised for not being suitable for commercial
development (Paek, 2006). In particular, (Paek, 2006) criticises the large amounts
of data that are needed, and complains that the learned policy is a “black box” which
cannot be controlled by the system designer. In the course of this book we will dis-
cuss this (and other) criticisms. In the final Chapter (section 10.2.2) we will sum-
marise the arguments. A major advantage of this new statistical approach is that it
introduces a principled scientific method for improving dialogue strategy design,
whereas the previous hand-coded approaches were mainly based on the designer’s
intuition.
We now present different Machine Learning paradigms and discuss which are

best suited for dialogue strategy development.

6 Note that this research combines efforts from academia as well as from industry. The first sta-
tistical dialogue systems were actually developed in the context of industrial research (Levin and
Pieraccini, 1997; Walker et al, 1998a).

2.3 Literature review: Learning Dialogue Strategies 21

2.3 Literature review: Learning Dialogue Strategies

2.3.1 Machine Learning Paradigms

Machine Learning (ML) can be defined as follows. Given a specific task to solve,
and a class of functions F , learning means using a set of observations, in order to
find f ∗ ∈ F which solves the task in an optimal sense. This entails defining a cost
functionC : F → ℜ such that, for the optimal solution ∀ f ∈ F, f ∗,C(f ∗)≤C(f) (no
solution has a cost less than the cost of the optimal solution). The cost functionC is
an important concept in learning, as it is a measure of how far away we are from an
optimal solution to the problem that we want to solve. Learning algorithms search
through the solution space in order to find a function that has the smallest possible
cost (or alternatively the maximal utility). Several textbooks offer a comprehensive
introduction to Machine Learning, e.g. (Bishop, 2006; Ghahramani, 2004; MacKay,
2003; Witten and Frank, 2005)
In general, there are three major learning paradigms, each corresponding to a

particular abstract learning task: Supervised Learning, Unsupervised Learning and
Reinforcement Learning. We now briefly define each paradigm, following Ghahra-
mani (2004).
In Supervised Learning (SL), we are given a set of example pairs/labelled data

points (x,y),x ∈ X ,y ∈ Y and the aim is to find a function f in the allowed class of
functions that matches the examples. In other words, we wish to infer the mapping
implied by the data; the cost function is to reduce the mismatch between our map-
ping and the data. The goal is to find a model which mimics the data as close as
possible, while still being general enough to classify/predict unseen events well.
In Unsupervised Learning (US) we are given some data x, and the cost function

to be minimised can be any function of the data x and the (unknown) target output. In
contrast to SL, no target outputs/input labels are given. In a sense, US can be thought
of as finding patterns in the data above and beyond what would be considered pure
unstructured noise. Tasks that fall within the paradigm of unsupervised learning are
in general estimation problems; the applications include clustering, or the estimation
of statistical distributions.

Reinforcement Learning (RL) is sequential decision making, where the RL agent
interacts with its environment (Sutton and Barto, 1998). The environment is defined
as:

“anything that cannot be changed arbitrarily by the agent is considered to be outside of it
and thus part of its environment” (Sutton and Barto, 1998, p.53)

For dialogue strategy learning the simulated environment can include the (sim-
ulated) user, channel noise, the back-end database and other components of the di-
alogue system, such as ASR, NLU, and TTS. At each point in time t, the agent
performs an action at and the environment generates an observation ot and an instan-
taneous cost ct (here also called “rewards”), according to some (usually unknown)
dynamics. The goal is then to discover a policy for selecting actions that minimises

22 2 Background

some measure of a long-term cost and maximises the expected cumulative utility
(also known as ‘final reward’). This is usually done by trial-and-error search meth-
ods. A detailed introduction to RL is given in Section 3.2.
To date, different Machine Learning approaches have been applied to automatic

dialogue management:

• Supervised approaches, which learn a strategy which mimic a given data set;
• Approaches based on decision theory, which are supervised approaches in the
sense that they optimise action choice with respect to some local costs as ob-
served in the data. In contrast to SL they explicitly model uncertainty in the
observation;

• Reinforcement Learning-based approaches, which are related to decision theo-
retic approaches, but optimise action choice globally as a sequence of decisions.

We now explain these techniques in more detail and review recent applications
for each ML paradigm.

2.3.2 Supervised Learning for Dialogue Strategies

Supervised learning follows a “learn-by-example” approach which learns a mapping
between given inputs and outputs from a fixed data set. In the following we review
three examples of supervised dialogue strategy learning.
The research of (Lane et al, 2004; Ueno et al, 2004), for example, adapts dia-

logue strategies to various user and situation models via example-based learning.
The training corpus is gathered using the following setup: a set of possible system
responses is displayed on a screen while the user interacts with the system. For each
system turn, the user selects the response that they think is most suitable in the cur-
rent situation.The learned strategy chooses the action which is selected most often
by the users. Note that this method is similar to Active Learning, where the human
annotator selects labels for the most informative cases (Cohn et al, 1994; Seung
et al, 1992). However, one has to assume that users are not experts in dialogue strat-
egy design. As a consequence, the annotations can be considered less than optimal.
In addition, this type of user assisted design has high costs, compared to strategy
design by an expert.
A different approach to “human assisted design” is introduced by Okamoto et al

(2001). They use a Wizard-of-Oz (WOZ) study (see Section 3.3.1) for data collec-
tion, where the human wizard is free to choose from a predefined set of utterances.
They assume that learning an “average” strategy of decisions taken by the human
wizard will result in a good dialogue strategy. Again, the wizard is not an expert in
how a machine should ideally react in a certain situation. In general, human deci-
sions often serve as “gold standard” for other tasks such as automatic summarisa-
tion (Teufel and van Halteren, 2004), or automatic annotation. However, human be-
haviour cannot be viewed as gold standard in the context of dialogue strategy design,

2.3 Literature review: Learning Dialogue Strategies 23

as Human-Machine Interaction is fundamentally different to Human-Human Inter-
action (as argued in Section 2.1). We will provide some examples of sub-optimal
wizard behaviour in Chapter 6.4. In addition, (Okamoto et al, 2001) report that SL
methods applied to WOZ data suffer from data-sparsity. (Note that WOZ studies are
costly and therefore usually result in limited amounts of data.)
In order to circumvent the data problem, (Filisko and Seneff, 2005, 2006) gen-

erate training data by interaction with simulated users, based on work by Chung
(2004a). A simulated user generates text-based utterances, which are the converted
to sound. An ASR system is used to recognise what was said, while the dialogue
manager explores different error handling strategies. They use SL to select the strat-
egy which is most likely to resolve the error in the next turn, as labelled in the data.
In sum, SL approaches optimise some point-based decision, i.e. they learn to es-

timate the most successful action in a certain context/dialogue state as observed in
a fixed data set, where “success” can be label indicating whether the error was re-
solved in the next turn (Filisko and Seneff, 2005, 2006), a rating assigned by human
judges (Lane et al, 2004; Ueno et al, 2004), or the action taken most frequently by
the human wizard (Okamoto et al, 2001).
However, SL approaches have two short-comings with respect to dialogue strat-

egy learning: First, they do not model uncertainty in what was recognised, which
is one of the major characteristics of human-machine dialogue (see Section 2.1).
Second, they do not model dialogue as a sequence of actions, but are only based
on local point-wise estimates. Third, they only mimic behaviour observed in a fixed
corpus and no new strategies can be explored. The first short-coming is corrected by
approaches using Decision Theory as discussed in the next Section. The other two
are corrected by Reinforcement Learning, as discussed in Section 2.3.4.

2.3.3 Dialogue as Decision Making under Uncertainty

Dialogue was first described as decision making under uncertainty by Paek and
Horvitz (Paek and Horvitz, 1999, 2000, 2003). Similar to SL, this approach is based
on some local cost function, defining a mapping states and actions, which is here
called utility. In addition, this approach also explicitly models the uncertainty in the
observed state. In this framework the agent selects the action A = a that maximizes
expected utility, EU(a|o), where o are observed events. Action selection is guided
by the following optimisation:

A = argmaxEU(a|o) = argmax
a

∑
s

P(S = s|o)×utility(a,s); (2.2)

where utility(a,s) expresses the utility of taking action a when the state of the
world is s. The utility function is trained via “local” user ratings. Users rate the
appropriateness of an action in a certain state via a GUI while they are interacting
with the system (similar to (Lane et al, 2004; Ueno et al, 2004) for SL). Paek and
Horvitz apply this framework to error-handling sub-strategies.

24 2 Background

Bohus (2007) and Skantze (2007a) follow a similar utility-based approach, also
applying it to error handling. The work of Bohus et al (Bohus, 2007; Bohus and
Rudnicky, 2005b; Bohus et al, 2006) follows a similar approach, but derives the
utility function from (post-annotated) dialogue data. In this work, binary logistic
regression is used to determine the costs between task success and various types
of understanding errors. Different regressions may then be calculated in different
dialogue states, resulting in more dynamic behaviour than simple threshold setting
(cf. discussion in Section 2.2.4). In addition, Bohus applies this framework to learn
whether to reject or accept a user input.
Recent work by Skantze Skantze (2007a,b) extends this approach and learns

whether to reject, accept, display understanding, or clarify a user input. Skantze
learns the cost for these actions from data gathered with the HIGGINS dialogue
system (Edlund et al, 2004).
In sum, this approach to dialogue as decision making under uncertainty has been

applied to optimise local error handling strategies i.e. how to detect and recover
from an ASR error within in a certain local context, given some uncertainty. How-
ever, this framework doesn’t consider what action is best in the long run, i.e. how
this local decision will contribute to a successful dialogue in the light of how the
dialogue proceeds after taking this action. For real-life problems, multivariate func-
tions commonly have many local minima and maxima. What is identified to be best
in the current situation, may not be optimal for the overall goal of the dialogue (e.g.
to efficiently solve a task). For example, results from a corpus study by Bohus and
Rudnicky (2005a) show that there is a discrepancy of up to 51.5% between what
is mis-recognised by the system and what is corrected by the users. Similar obser-
vations are also reported by (Acomb et al, 2007), where 13.2% of the confirmed
utterances are mis-recognised. In other words, users may leave errors locally uncor-
rected, which then globally leads to task failure.

2.3.4 Reinforcement Learning for Dialogue Strategies

In contrast to the above approaches, Reinforcement Learning treats dialogue strat-
egy learning as a sequential optimisation problem, leading to strategies which are
globally optimal (Sutton and Barto, 1998).7

Similar to Decision Theory, uncertainty can be explicitly represented in RL.
Stochastic variation in the user response is represented as transition probabilities
between states and actions using Markov Decision Processes (MDPs), which we
introduce in Section 3.2.1. Furthermore, dialogue strategies need to be robust to
“noisy” observations, for example speech recognition errors introduced by ASR.
Therefore, the problem is represented as Partially Observable Markov Decision Pro-
cess (POMDP), which we introduce in Section 3.2.1.2. While being conceptually

7 Note that RL is the global optimisation technique which is most frequently applied to dialogue
strategy learning. However, others do exist. For example, work by Toney (2007); Toney et al
(2006), for example, explores the use of Genetic Algorithms for dialogue strategy learning.

2.3 Literature review: Learning Dialogue Strategies 25

more attractive that MDPs, POMDP-based SDS still suffer from high computational
power, memory, and storage requirements of the hardware used, thus limiting the
complexity of the systems currently being deployed.
We now review three RL-based systems which address one of the most urgent

problems for RL-based strategy development: while being theoretically most attrac-
tive for dialogue strategy learning, RL needs substantial amounts of data to learn
reliable strategies (also see discussion in Section 3.2.2.3). This is due to the follow-
ing facts: If a situation was not seen in the training data (i.e. is unseen) the agent
has to “guess” what to do, leading to less robust strategies. Furthermore, it leads
to unreliable estimates of the expected utility (reward) of an action if state-action
pairs are visited very infrequently. This is due to the fact that the dialogue learner
interacts with a stochastic environment: every time the agent visits a state and ex-
ecutes an action, the environment (i.e. the user, ASR, etc.) might react differently.
Thus a state action-pair needs to be visited several times in order to obtain reliable
estimates, which is less likely when learning from limited data. Several approaches
have been suggested to overcome the data sparsity problem for RL.
One technique addressing the data sparsity problem, is to limit the number of

possible system states to the size of the available data set. For example Litman et al
(2000); Singh et al (2002) use RL to optimise initiative and confirmation (sub-)
strategies for the NJFun system. They learn these strategies from a fixed data set
comprising 311 dialogues from a user study with 54 subjects. In order to learn reli-
able strategies from this data, Singh et al keep the policy space as small as possible.
The strategy is limited to 42 possible states, where only two actions are made avail-
able in each state. They report that only 8 (19%) states are visited less than 10 times
in the training data. The evaluation results of Litman et al (2000); Singh et al (2002)
are encouraging: results with real users show significant increase in task completion
rate from 52% to 64%. However, learning with limited state spaces still requires “a
fair amount” data. Note that, Tetreault et al (2007) introduce a measure based on
strategy convergence which helps to determine how much data is needed relative to
the size of state-action set. However, learning with limited state spaces is in general
not desirable, as only very simple strategies can be learned (and for very simple
strategies hand-coded strategies might perform equally well). Another approach to
handle the data problem is to summarise the state space in order to generalise to
unseen situations as described below (also see Section 3.2.2.3).
The work of Henderson et al (2005, 2008) addressed a much more complex prob-

lem using RL, which is represented by 10386 states and 74 actions (resulting in pos-
sible 7410386 policies). They therefore learn from a much larger data set of 2331
dialogues and over 103000 turns, taken from the COMMUNICATOR corpus (Walker
et al, 2002b). However, they find that state frequencies in the data set follow a Zip-
fian (i.e., long-tailed) distribution, with 61% of the system turns having states that
only occurred once in the data. Henderson et al (2008) address the data sparsity
problem using two different techniques. First, linear function approximation is ap-
plied. Linear function approximation learns linear estimates between state-action
pairs and expected reward values (Sutton and Barto, 1998), and thus generalises
to states which are not in the training data (also see Section 3.2.2.3). In addition,

26 2 Background

Henderson et al (2008) apply a novel hybrid approach combining Supervised and
Reinforcement Learning. SL is used to model which action to take in portions of the
state space where data is not sufficient. RL is used to choose between the remain-
ing states. The results show that the hybrid RL/SL policy outperforms the strategies
which are based on RL or SL only. The SL policy is a very challenging baseline as
it mimics a ‘multi-version’ system of 8 well-engineered COMMUNICATOR systems
(Walker et al, 2002b). Multi-version systems are known to remove errors made by
any one system that are not shared by most of the other systems.8 Still, RL is able to
improve upon SL by exploring different actions and evaluating how good they are in
the long run (i.e. with respect to all subsequent actions which are likely to follow),
rather than just choosing the locally best action according to the 8 systems. This
result also illustrates that hand-coded strategies are very unlikely to be globally op-
timal: even the very “essence” of 8 expert systems manually designed by a human
developer, is still sub-optimal. RL-based strategies, in contrast, are provably opti-
mal. However, the exploration of new strategies as done by (Henderson et al, 2005,
2008) is very limited as they learn from a fixed data set. In addition, this approach
relies on a substantial amount of initial training data, where annotated dialogue data
is still scarce (Lemon and Pietquin, 2007).
A radically different approach to solve the data sparsity problem was introduced

by Eckert et al (1997, 1998); Levin et al (2000). In this approach, the RL strategy is
trained while interacting with a simulated dialogue environment, including a simu-
lated user (cf. (Filisko and Seneff, 2005, 2006) for SL). This approach allows arti-
ficial expansion of a small amount of initial training data in a two-stage approach:
a statistical learning environment is first trained on a limited amount of dialogue
data and the simulated environment is then used to generate additional dialogues
by interacting with the dialogue policy. However, the simulation-based approach as-
sumes the presence of a small corpus of annotated in-domain dialogues. In addition,
the quality of the learned strategy depends on the quality of the simulated learning
environment. We address these problems in the course of the book .
Finally, new techniques have been explored very recently for rapid learning from

small amounts of data (Gasic and Young, 2011; Pietquin et al, 2011a,b), without
the use of user simulations. These methods may ultimately allow online learning
of dialogue strategies during interaction. For example, (Pietquin et al, 2011a) learn
sparse representations of the value function by sample efficient off-policy learning
using Kalman Temporal Differences, also see Section 3.2.2.2.

2.4 Summary

This Chapter argues for the use of Reinforcement Learning (RL) to develop and
optimise dialogue strategies. We first introduced a general discussion of Human-
Human and Human-Computer Interaction (HCI). Dialogue systems for HCI require

8 For example, multi-expert/ensemble-based learning has also shown to lead to improved results
for parse selection (Osborne and Baldridge, 2004)

2.4 Summary 27

a dialogue strategy which “tells” the system what to do. We then presented the con-
ventional lifecycle model for dialogue strategy development and discuss general dif-
ferences between practises applied in industry and research. We concluded that the
current challenge for dialogue development are strategies which are robust, adaptive,
context-sensitive and cheap to develop. For this reason, statistical machine learning
approaches have become attractive. We compare three different learning paradigms
which are currently applied to strategy development: Supervised Learning, Decision
Theoretic approaches, and Reinforcement Learning.
Having summarised the general background to our work, the next chapter deals

with the specifics of Reinforcement Learning approaches, Dialogue simulation
methods, and the application domain of our case-study.

http://www.springer.com/978-3-642-24941-9

	Chapter 2 Background
	2.1 Human-Computer Interaction
	2.2 Dialogue Strategy Development
	2.2.1 Conventional Development Lifecycle
	2.2.2 Evaluation and Strategy Quality Control
	2.2.2.1 Quality Control in Industry
	2.2.2.2 Evaluation Practises in Academia
	2.2.2.3 The PARADISE Evaluation Framework
	2.2.2.4 Strategy Re-Implementation

	2.2.3 Strategy Implementation
	2.2.3.1 Implementation Practises in Industry
	2.2.3.2 Implementation Practises in Academia

	2.2.4 Challenges for Strategy Development

	2.3 Literature review: Learning Dialogue Strategies
	2.3.1 Machine Learning Paradigms
	2.3.2 Supervised Learning for Dialogue Strategies
	2.3.3 Dialogue as Decision Making under Uncertainty
	2.3.4 Reinforcement Learning for Dialogue Strategies

	2.4 Summary

