Contents

1 Introduction

1.1 Secondary Metabolites in Medicine

1.2 Natural Products as Lead Compounds for Drug Discovery

1.3 Secondary Metabolites from Humans

1.4 Discovery and Isolation of Lipoxins

1.5 Rapid Metabolism of Lipoxins

1.6 Structure Activity Relationships of Natural Lipoxins

1.7 Design of Stable Lipoxin Analogues

1.8 Design of Heteroaromatic Lipoxin A4 Analogues

References

2 Recent Advances in the Chemistry and Biology of Stable Synthetic Lipoxin Analogues

2.1 Introduction

2.2 Design, Synthesis and Biological Evaluation of Stable Lipoxin Analogues

2.3 (A) Structural Modifications of the C15–20 Chain

2.4 (B) Structural Modifications of the Triene

2.5 (C) Structural Modifications of the Upper Chain

2.6 Conclusion

References

3 Synthesis of Heck Coupling Partner for the Preparation of Heteroaromatic Lipoxin A4 Analogues

3.1 Introduction

3.2 Synthesis of Key Intermediate for Heck Coupling Reaction

3.3 Conclusion

3.4 Experimental

3.4.1 (R)-1(S)-Oxiran-2-yl)prop-2-en-1-ol (4)

3.4.2 (3R, 4S)-7-[1',3']Dioxan-2'-yl-hept-1-ene-3,4-diol (7)
3.4.3 1-(1-Acetoxy-4-[1',3']dioxan-2'-yl-butyl)-allyl acetate (8) .. 49
3.4.4 (5S,6R)-5,6-Diacetoxy-oct-7-enoic acid (9) 50
3.4.5 (5S,6R)-5,6-Diacetoxy-oct-7-enoic acid methyl ester (12) .. 50
3.4.6 (5S,6R)-5,6-Dihydroxy-oct-7-enoic acid methyl ester (10) .. 51
3.4.7 (5S,6R)-Methyl 5,6-bis(tert-butyldimethylsilyloxy) oct-7-enoate (3) 51
3.4.8 (5S,6R)-5,6-Dihydroxy-oct-7-enoic acid methyl ester (10) .. 52

References ... 52

4 Synthesis and Biological Evaluation of Pyridine-Containing Lipoxin A4 Analogues ... 55
4.1 Introduction ... 55
4.2 Retrosynthetic Analysis ... 57
4.3 Results and Discussion .. 58
4.4 Biological Evaluation of Pyridine-Containing LXA4 Analogues ... 66
4.5 Synthesis of Pyridine-Containing LXA4 Analogues with an Extended Lower Chain ... 69
4.6 Conclusion .. 72
4.7 Experimental ... 73
4.7.1 1-(3-Bromopyridin-4-yl)hexan-1-ol (7) 73
4.7.2 1-(3-Bromopyridin-4-yl)hexan-1-one (3) 73
4.7.3 (5S, 6R, E)-Methyl 5,6-bis(tert-butyldimethylsilyloxy)-8-(4-hexanoylpyridin-3-yl)oct-7-enoate (10) 74
4.7.4 (5S, 6R, E)-Methyl 5,6-bis(tert-butyldimethylsilyloxy)-8-(4-(4-((R)-1-hydroxyhexyl)pyridin-3-yl)oct-7-enoate ((1S)-14) ... 75
4.7.5 (5S, 6R, E)-Methyl 5,6-bis(tert-butyldimethylsilyloxy)-8-(4-(4-((R)-1-hydroxyhexyl)pyridin-3-yl)oct-7-enoate ((1R)-14) ... 75
4.7.6 (5S, 6R, E)-Methyl 5,6-dihydroxy-8-(4-((S)-1-hydroxyhexyl)pyridin-3-yl)oct-7-enoate ((1S)-2) 76
4.7.7 (5S, 6R, E)-Methyl 5,6-dihydroxy-8-(4-((R)-1-hydroxyhexyl)pyridin-3-yl)oct-7-enoate ((1R)-2) 77
4.7.8 1-(3-Bromopyridin-4-yl)decan-1-ol (17) 77
4.7.9 1-(3-Bromopyridin-4-yl)decan-1-one (18) 78
4.7.10 (5S, 6R, E)-Methyl 5,6-bis(tert-butyldimethylsilyloxy)-8-(4-decanoylpyridin-3-yl)oct-7-enoate (16) 79
5 Thiophene-Containing Lipoxin A4 Analogues: Synthesis and Their Effect on the Production of Key Cytokines

5.1 Introduction

5.2 Retrosynthetic Analysis of the Thiophene-Containing LXA4 Analogue

5.3 Results and Discussion

5.4 Protecting Group-Free Synthesis of the Thiophene-Containing LXA4

5.5 Attempted Grubbs’ Cross Coupling Reaction

5.6 Biological Evaluation

5.7 Conclusion

5.8 Experimental

5.8.1 1-(3-Bromothiophen-2-yl)hexan-1-ol (7)

5.8.2 1-(3-Bromothiophen-2-yl)hexan-1-one (3)

5.8.3 (5S,6R,E)-Methyl 5,6-bis(tert-butyldimethylsilyloxy)-8-(2-hexanoylthiophen-3-yl)oct-7-enoate (8)

5.8.4 (5S,6R,E)-Methyl 5,6-bis(tert-butyldimethylsilyloxy)-8-(2-((S)-1-hydroxyhexyl)thiophen-3-yl)oct-7-enoate (9)

5.8.5 (5S,6R,E)-Methyl 8-(2-hexanoylthiophen-3-yl)-5,6-dihydroxoyct-7-enoate (10)

5.8.6 1-(3-Vinylthiophen-2-yl)hexan-1-one (25)

5.8.7 (R)-1-(3-Vinylthiophen-2-yl)hexan-1-ol ((1R)-14)

5.8.8 Methyl 4-((4S,5R)-5-((E)-2-2-((R)-1-hydroxyhexyl)thiophen-3-yl)vinyl)-2,2 dimethyl-1,3-dioxolan-4-yl)butanoate((1R)-13)

5.8.9 Methyl 4-((4S,5R)-2,2-dimethyl-5-vinyl-1,3-dioxolan-4-yl)butanoate (26)

5.8.10 Cytokine Production by J774 Macrophages

References

6 Towards the Synthesis of Various Heteroaromatic Lipoxin A4 Analogues

6.1 Introduction

6.2 Towards the Synthesis of 6-Methyl Pyridine LXA4 1
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Towards the Synthesis of Furan LXA<sub>4</sub></td>
<td>114</td>
</tr>
<tr>
<td>6.4</td>
<td>Towards the Synthesis of Indole LXA<sub>4</sub></td>
<td>118</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusion</td>
<td>121</td>
</tr>
<tr>
<td>6.6</td>
<td>Experimental</td>
<td>122</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Methyl 2-Bromo-6-Methylnicotinate (7)</td>
<td>122</td>
</tr>
<tr>
<td>6.6.2</td>
<td>1-(2-Bromo-6-Methylpyridin-3-yl)Hexan-1-One (9)</td>
<td>122</td>
</tr>
<tr>
<td>6.6.3</td>
<td>1-(3-Bromofuran-2-yl)Hexan-1-ol (13)</td>
<td>123</td>
</tr>
<tr>
<td>6.6.4</td>
<td>1-(3-Bromofuran-2-yl)Hexan-1-One (14)</td>
<td>124</td>
</tr>
<tr>
<td>6.6.5</td>
<td>1-(3-Vinylfuran-2-yl)hexan-1-one (19)</td>
<td>125</td>
</tr>
<tr>
<td>6.6.6</td>
<td>2,3-Dibromo-1-Methyl-1H-Indole (21)</td>
<td>125</td>
</tr>
<tr>
<td>6.6.7</td>
<td>1-(3-Bromo-1-Methyl-1H-Indol-2-yl)Hexan-1-ol (23)</td>
<td>126</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>127</td>
</tr>
</tbody>
</table>
Heteroaromatic Lipoxin A4 Analogues
Synthesis and Biological Evaluation
Duffy, C.
2012, XXII, 130 p., Hardcover
ISBN: 978-3-642-24631-9