Contents

1 Introduction .. 1
 1.1 Types of Homogeneous Catalysis with Metal Complexes, Their Advantages and Drawbacks .. 1
 1.2 Perspectives of the Industrial Use of Homogeneous Catalysis with Metal Complexes .. 5
 References ... 9

2 Homogeneous Redox Catalysis with Transition Metal Compounds in Oxide and Peroxide Systems 11
 2.1 General Principles of Catalytic Redox Reactions with Metal Compounds ... 11
 2.2 Intermediate Compounds, O₂ Molecule Activation, and Free Radicals in the Catalysis of Oxidation Processes 17
 2.2.1 Nature of Forming Intermediate Compounds 17
 2.2.2 Oxygen Molecule Activation: Intermediate Species, and Free Radicals ... 20
 2.2.3 Peroxocomplexes of Some Metals ... 43
 2.3 Theoretical Aspects of Catalysis with Metal Complexes 46
 2.3.1 Influence of Complex Formation on Metal Ion Reactivity and Catalytic Processes Mechanisms (Role of Coordination in Catalysis) ... 46
 2.3.2 Qualitative Model of the Theory of PCT Complexes 51
 2.4 General Principles of Redox Catalysis Mechanisms Determination ... 54
 2.4.1 Possible Mechanisms of Catalytic Redox Systems $Fe^{z+}_{aq} - H_2O_2$ and $Fe^{z+}_{Ln} - H_2O_2$.. 54
 2.4.2 Stages of Revealing Catalytic Redox Reactions Mechanism (Methodic Aspect²) .. 62
2.5 Mechanisms of Oxide and Peroxide Systems Redox Transformations Catalysis with Transition Metal Compounds 75
 2.5.1 Mechanisms of \(O_2\) Transformation in Oxide Catalytic Systems 75
 2.5.2 Mechanisms of \(H_2O_2\) Decomposition in the Peroxide Catalytic Systems 80
2.6 Mechanisms of Organic Substrates (S) Oxidation in Oxide and Peroxide Systems 91
 2.6.1 Mechanisms of Organic Substrates Oxidation by Oxygen \([\text{Systems } M^{\text{z+}}(M^{\text{z+}}L_n)\rightarrow O_2\rightarrow S]\) 91
 2.6.2 Mechanisms of Organic Substrate’s Oxidation by Hydrogen Peroxide \([\text{Systems } M^{\text{z+}}(M^{\text{z+}}L_n)\rightarrow H_2O_2\rightarrow S]\) 96
2.7 Ferryl Particles in the Catalysis of Oxidation Processes 105
 2.7.1 Experimental Confirmation of Ferryl Particles Formation 105
 2.7.2 Quantum-Chemical Methods of Ferryl (Manganyl) Particles Formation Study 107

References 113

3 Biochemical Processes and Metal Complexes’ Role as Catalysts 123
 3.1 Catalytic Influence of Transition Metal Compounds on Biological Processes 123
 3.1.1 Role of Transition Metal Ions in Biological Systems 124
 3.1.2 Catalytic Reactions in the Initiation of Lipid Peroxidation 128
 3.1.3 Ligands Influence of Haber–Weiss Reaction 133
 3.1.4 Toxicity of \(O_2\) Reduced Forms with Regard to Biological Systems and Methods of Protection 136
 3.1.5 Role of Bleomycin and Its Models in DNA Deterioration 142
 3.1.6 Intermediates of Ferryl Particles Type in Biochemical Systems 155
 3.2 Enzymes and Their Modeling 161
 3.2.1 Mechanisms of Some Enzymes’ Functioning and Their Modeling: Modeling of Monooxidases in Alkanes, Alkenes, and Other Substrates Hydroxylation and Epoxidation 161
 3.2.2 Dopamine \(\beta\)-Hydroxylase and Its Models 203
 3.2.3 Model Systems of Dioxygenases 206
 3.2.4 Model Systems of Catalase 212
 3.2.5 Peroxidases and Their Model Systems 219
 3.2.6 Superoxide Dismutase and Its Models 231
 3.2.7 Models of Oxidases (Laccase, Cytochrome C, and Galactose Oxidase) 236

References 244
Contents

4 Catalytic Processes and Human Diseases

- **4.1 Catalytic Free Radical Processes In Vivo and Toxicity of Oxygen Reduction Products**
- **4.2 Stress and Catalytic Processes**
- **4.3 Inflammatory Processes and Role of Metal Compounds**
- **4.4 Role of Enzymes and Metal Compounds in Phagocytosis**
- **4.5 Metal-Catalyzed Oxidation and Ageing**
 - **4.5.1 Oxidative Damage of Proteins and Enzymes, and Ageing**
 - **4.5.2 Mitochondria Damage with Free Radicals and Ageing**
 - **4.5.3 Mechanism of Lipofuscin Formation and Ageing**
 - **4.5.4 The Role of Antioxidant Enzymes and Substances in Cellular Ageing**
- **4.6 Diseases of Joints and Tissues and Catalytic Free Radical Processes**
- **4.7 Catalytic and Radical Processes on Atherosclerosis and Myocardial Ischemia**

5 Catalytic Oxidation of Oxyacids and Natural Polyphenols

- **5.1 Metabolic Cycles of Tri- and Dicarbonic Acids**
- **5.2 Catalytic Processes of Dicarbonic Acids of Baroud Cycle Transformations**
 - **5.2.1 Catalytic Processes of Baroud Cycle Oxyacids Transformations**
 - **5.2.2 General Regularities of the Reduction–Oxidation Conversions of the Baroud Cycle Oxyacids**
- **5.3 Catalytic Transformations of Natural Polyphenols**
 - **5.3.1 Role of Natural Polyphenols and Their Catalytic Oxidative Transformations**
 - **5.3.2 Catalysis of Catechins Oxidation with Oxygen and Hydrogen Peroxide in the Presence of Fe$^{3+}$ and Fe$^{2+}$ Ions**

6 Catalytic Processes in Ecological Chemistry

- **6.1 Ecological Chemistry and Catalysis with Metal Complexes**
- **6.2 Catalytic Processes in the Atmosphere and Acid Rain Formation**
- **6.3 Catalytic Redox Processes in Natural Water and Its Self-Purification**
 - **6.3.1 Main Sources of H$_2$O$_2$, OH* and O$_2^*$ (HO$_2^*$) Radicals Formation in Natural Water**
 - **6.3.2 H$_2$O$_2$ and O$_2$ Activation in Natural Water and the Role of Metal Compounds**
6.3.3 Photocatalytic Transformation of Nitrogen Mineral Forms in Water .. 381
6.3.4 Photocatalytic Transformations of Anthropogenic Organic Pollutants in Water Compartments 387
6.3.5 Modeling of Pollutant Transformation and Self-purification Capacity of Natural Water 390
6.4 Wastewater Treatment and Catalytic Processes .. 396
 6.4.1 Principles of Catalytic Wastewater Treatment .. 396
 6.4.2 Combined Redox-Photocatalytic Processes ... 401
6.5 Catalymetry of Environmental Objects ... 408
References ... 415

7 Homogeneous Catalysis with Metal Complexes in the Chemical Industry and Foodstuffs Chemistry 423
 7.1 Catalytic Processes in the Chemical Industry ... 423
 7.1.1 Catalytic Oxidation of Organic Compounds in Model Systems and Their Possible Industrial Applications .. 423
 7.1.2 Catalytic Hydroxylation and Epoxidation in Industrial Processes 426
 7.1.3 Mechanisms of Some Industrial Catalytic Processes 434
 7.2 Foodstuffs Chemistry and Catalysis ... 438
 7.2.1 Catalytic Lipids Peroxidation in Foodstuffs .. 438
 7.2.2 Distribution of Iron Compounds in Foodstuffs and Their Influence on Lipids Peroxidation 446
 7.2.3 Role of Antioxidants in Foodstuffs Preservation .. 449
 7.3 Redox Catalytic Processes in Wine-Making .. 454
 7.3.1 Redox Catalytic Non-Enzymatic Processes During Wine Maturing and Ageing .. 454
 7.3.2 Methods of Wine Stabilization and Improving of Its Organoleptic Properties .. 457
References ... 461

Index .. 469
Homogeneous Catalysis with Metal Complexes
Fundamentals and Applications
Duca, G.
2012, XII, 480 p., Hardcover
ISBN: 978-3-642-24628-9