1 Introduction ... 1
 1.1 Types of Homogeneous Catalysis with Metal Complexes,
 Their Advantages and Drawbacks 1
 1.2 Perspectives of the Industrial Use of Homogeneous
 Catalysis with Metal Complexes 5
References ... 9

2 Homogeneous Redox Catalysis with Transition Metal
Compounds in Oxide and Peroxide Systems 11
 2.1 General Principles of Catalytic Redox Reactions
 with Metal Compounds ... 11
 2.2 Intermediate Compounds, O_2 Molecule Activation,
 and Free Radicals in the Catalysis of Oxidation Processes 17
 2.2.1 Nature of Forming Intermediate Compounds 17
 2.2.2 Oxygen Molecule Activation: Intermediate
 Species, and Free Radicals 20
 2.2.3 Peroxocomplexes of Some Metals 43
 2.3 Theoretical Aspects of Catalysis with Metal Complexes 46
 2.3.1 Influence of Complex Formation on Metal Ion
 Reactivity and Catalytic Processes Mechanisms
 (Role of Coordination in Catalysis) 46
 2.3.2 Qualitative Model of the Theory of PCT Complexes 51
 2.4 General Principles of Redox Catalysis
 Mechanisms Determination 54
 2.4.1 Possible Mechanisms of Catalytic Redox Systems
 $Fe^{2+}_{aq} + H_2O_2$ and $Fe^{2+}_{aq} + L_n - H_2O_2$ 54
 2.4.2 Stages of Revealing Catalytic Redox Reactions
 Mechanism (Methodic Aspect^2) 62
2.5 Mechanisms of Oxide and Peroxide Systems Redox Transformations Catalysis with Transition Metal Compounds 75
 2.5.1 Mechanisms of O₂ Transformation in Oxide Catalytic Systems ... 75
 2.5.2 Mechanisms of H₂O₂ Decomposition in the Peroxide Catalytic Systems ... 80

2.6 Mechanisms of Organic Substrates (S) Oxidation in Oxide and Peroxide Systems ... 91
 2.6.1 Mechanisms of Organic Substrates Oxidation by Oxygen [Systems Mᵢ⁺(Mᵢ⁺⁺Ln⁻⁻)−O₂−S] 91
 2.6.2 Mechanisms of Organic Substrate’s Oxidation by Hydrogen Peroxide [Systems Mᵢ⁺(Mᵢ⁺⁺Ln⁻⁻)−H₂O₂−S] 96

2.7 Ferryl Particles in the Catalysis of Oxidation Processes 105
 2.7.1 Experimental Confirmation of Ferryl Particles Formation ... 105
 2.7.2 Quantum-Chemical Methods of Ferryl (Manganyl) Particles Formation Study 107

References .. 113

3 Biochemical Processes and Metal Complexes’ Role as Catalysts 123
 3.1 Catalytic Influence of Transition Metal Compounds on Biological Processes .. 123
 3.1.1 Role of Transition Metal Ions in Biological Systems 124
 3.1.2 Catalytic Reactions in the Initiation of Lipid Peroxidation ... 128
 3.1.3 Ligands Influence of Haber–Weiss Reaction ... 133
 3.1.4 Toxicity of O₂ Reduced Forms with Regard to Biological Systems and Methods of Protection 136
 3.1.5 Role of Bleomycin and Its Models in DNA Deterioration ... 142
 3.1.6 Intermediates of Ferryl Particles Type in Biochemical Systems .. 155
 3.2 Enzymes and Their Modeling ... 161
 3.2.1 Mechanisms of Some Enzymes’ Functioning and Their Modeling: Modeling of Monooxidases in Alkanes, Alkenes, and Other Substrates Hydroxylation and Epoxidation ... 161
 3.2.2 Dopamine β-Hydroxylase and Its Models ... 203
 3.2.3 Model Systems of Dioxygenases ... 206
 3.2.4 Model Systems of Catalase .. 212
 3.2.5 Peroxidases and Their Model Systems ... 219
 3.2.6 Superoxide Dismutase and Its Models ... 231
 3.2.7 Models of Oxidases (Laccase, Cytochrome C, and Galactose Oxidase) ... 236

References .. 244
4 Catalytic Processes and Human Diseases .. 261
 4.1 Catalytic Free Radical Processes In Vivo and Toxicity of Oxygen Reduction Products .. 261
 4.2 Stress and Catalytic Processes .. 267
 4.3 Inflammatory Processes and Role of Metal Compounds 279
 4.4 Role of Enzymes and Metal Compounds in Phagocytosis 284
 4.5 Metal-Catalyzed Oxidation and Ageing 289
 4.5.1 Oxidative Damage of Proteins and Enzymes, and Ageing ... 289
 4.5.2 Mitochondria Damage with Free Radicals and Ageing 292
 4.5.3 Mechanism of Lipofuscin Formation and Ageing 294
 4.5.4 The Role of Antioxidant Enzymes and Substances in Cellular Ageing .. 295
 4.6 Diseases of Joints and Tissues and Catalytic Free Radical Processes .. 299
 4.7 Catalytic and Radical Processes on Atherosclerosis and Myocardial Ischemia ... 301
 4.7.1 Catalytic and Radical Processes on Atherosclerosis 301
 4.7.2 Myocardial Deteriorations and Catalytic Processes with Free Radicals Formation 307
References ... 310

5 Catalytic Oxidation of Oxyacids and Natural Polyphenols 319
 5.1 Metabolic Cycles of Tri- and Dicarbonic Acids 319
 5.2 Catalytic Processes of Dicarbonic Acids of Baroud Cycle Transformations ... 322
 5.2.1 Catalytic Processes of Baroud Cycle Oxyacids Transformations ... 322
 5.2.2 General Regularities of the Reduction–Oxidation Conversions of the Baroud Cycle Oxyacids 338
 5.3 Catalytic Transformations of Natural Polyphenols 341
 5.3.1 Role of Natural Polyphenols and Their Catalytic Oxidative Transformations 341
 5.3.2 Catalysis of Catechins Oxidation with Oxygen and Hydrogen Peroxide in the Presence of Fe$^{3+}$ and Fe$^{2+}$ Ions .. 342
References ... 347

6 Catalytic Processes in Ecological Chemistry 351
 6.1 Ecological Chemistry and Catalysis with Metal Complexes 351
 6.2 Catalytic Processes in the Atmosphere and Acid Rain Formation .. 355
 6.3 Catalytic Redox Processes in Natural Water and Its Self-Purification ... 369
 6.3.1 Main Sources of H$_2$O$_2$, OH$^•$ and O$_2$•$^-$ (HO$_2$$^•$) Radicals Formation in Natural Water 369
 6.3.2 H$_2$O$_2$ and O$_2$ Activation in Natural Water and the Role of Metal Compounds 374
6.3.3 Photocatalytic Transformation of Nitrogen
Mineral Forms in Water .. 381
6.3.4 Photocatalytic Transformations of Anthropogenic
Organic Pollutants in Water Compartments 387
6.3.5 Modeling of Pollutant Transformation and
Self-purification Capacity of Natural Water 390
6.4 Wastewater Treatment and Catalytic Processes 396
 6.4.1 Principles of Catalytic Wastewater Treatment 396
 6.4.2 Combined Redox-Photocatalytic Processes 401
6.5 Catalymetry of Environmental Objects 408
References .. 415

7 Homogeneous Catalysis with Metal Complexes in the
Chemical Industry and Foodstuffs Chemistry 423
 7.1 Catalytic Processes in the Chemical Industry 423
 7.1.1 Catalytic Oxidation of Organic Compounds in
 Model Systems and Their Possible
 Industrial Applications 423
 7.1.2 Catalytic Hydroxylation and Epoxidation
 in Industrial Processes 426
 7.1.3 Mechanisms of Some Industrial Catalytic Processes .. 434
 7.2 Foodstuffs Chemistry and Catalysis 438
 7.2.1 Catalytic Lipids Peroxidation in Foodstuffs 438
 7.2.2 Distribution of Iron Compounds in Foodstuffs
 and Their Influence on Lipids Peroxidation 446
 7.2.3 Role of Antioxidants in Foodstuffs Preservation 449
 7.3 Redox Catalytic Processes in Wine-Making 454
 7.3.1 Redox Catalytic Non-Enzymatic Processes
 During Wine Maturing and Ageing 454
 7.3.2 Methods of Wine Stabilization and Improving
 of Its Organoleptic Properties 457
References .. 461

Index ... 469
Homogeneous Catalysis with Metal Complexes
Fundamentals and Applications
Duca, G.
2012, XII, 480 p., Hardcover
ISBN: 978-3-642-24628-9