Contents

1 Introduction .. 1
References .. 6

2 Mathematical Models of Flow in Porous Media 9
 2.1 Fundamental Concepts 10
 2.1.1 Wettability and Capillarity 10
 2.1.2 Volume Fractions and Saturations 13
 2.1.3 Fluid Potentials 14
 2.1.4 Capillary Function 16
 2.1.5 Darcy Equation 21
 2.1.6 Relative Permeability Functions 23
 2.1.7 Density and Viscosity of Fluids 26
 2.2 Governing Equations for Fluid Flow 27
 2.2.1 Two-Phase Flow 27
 2.2.2 Richards Equation 30
 2.2.3 Single-Phase Flow 35
 2.3 Auxiliary Conditions 36
 2.3.1 Initial Conditions 36
 2.3.2 Boundary Conditions 39
 2.3.3 Conditions at Material Interfaces 41
References .. 44

3 Numerical Solution of Flow Equations 49
 3.1 Basic Properties of Numerical Discretization Schemes ... 50
 3.2 Spatial Discretization 53
 3.2.1 Finite Difference Method 53
 3.2.2 Finite Element Method 57
 3.2.3 Cell-Centred Finite Volume Method 66
 3.2.4 Vertex-Centred Finite Volume Method 70
3.3 Solution of Semi-Discrete Equations 75
 3.3.1 Discretization in Time .. 75
 3.3.2 Linearization .. 77
 3.3.3 Selection of Time Step Size 84
 3.3.4 Solution of Linear Systems 85
References .. 86

4 Computation of Inter-Nodal Permeabilities for Richards Equation 91
 4.1 Overview of Averaging Approaches for One-Dimensional Flow 91
 4.1.1 Simple Averaging Methods 92
 4.1.2 Direction Dependent Methods 94
 4.1.3 Darcian Means ... 96
 4.2 Improved Approximation Scheme 100
 4.2.1 Infiltration .. 102
 4.2.2 Drainage ... 105
 4.2.3 Capillary Rise ... 107
 4.2.4 Implementation Issues 109
 4.2.5 Evaluation for Steady Flow 110
 4.2.6 Evaluation for Unsteady Flow 114
 4.3 Saturated–Unsaturated Transition 118
 4.4 Heterogeneous Medium ... 120
 4.5 Multidimensional Problems 129
 4.6 Two-Phase Flow ... 133
References .. 136

5 Upscaling from Darcy Scale to Field Scale .. 139
 5.1 Heterogeneity Patterns .. 140
 5.2 Overview of Upscaling Approaches 142
 5.3 Permeability Upscaling for Steady Single-Phase Flow 145
 5.3.1 Algebraic Averaging ... 146
 5.3.2 Effective Medium Theory 149
 5.3.3 Direct Solution of Steady Flow Equation 153
 5.4 Upscaling of Transient Two-Phase Flow 160
 5.4.1 Local Equilibrium and Quasi Steady-State Models 160
 5.4.2 Local Non-Equilibrium Models 164
References .. 170

6 Flow in Binary Media with Heterogeneous Hydraulic Diffusivity 177
 6.1 Periodic Homogenization Method 177
 6.2 Basic Assumptions .. 179
6.3 Upscaled Models for Different Diffusivity Ratios 183
 6.3.1 Moderately Heterogeneous Medium 183
 6.3.2 Weakly Permeable Inclusions: Local Equilibrium 186
 6.3.3 Weakly Permeable Inclusions:
 Local Non-Equilibrium 188
 6.3.4 Quasi-Impermeable Inclusions 190
 6.3.5 Highly Permeable Inclusions 191
6.4 Generalized Formulation 192
6.5 Numerical Implementation 194
6.6 Comparison with Darcy-Scale Numerical Solutions 199
6.7 Comparison with Experiment 205
 6.7.1 Experimental Setup 205
 6.7.2 Material Parameters 206
 6.7.3 Results .. 210
References .. 212

7 Flow in Binary Media with Heterogeneous Air-Entry Pressure . . 215
 7.1 Upscaled Model of Two-phase Capillary Flow 215
 7.1.1 Basic Assumptions 215
 7.1.2 Capillary Flow without Entry Pressure Effects 217
 7.1.3 Infiltration with Entry Pressure Effects 218
 7.1.4 Drainage with Entry Pressure Effects 221
 7.1.5 Modified Richards Equation 223
 7.2 Numerical simulations 224
 7.2.1 Geometry and Material Parameters 225
 7.2.2 Example 1: Fluctuating Water Table 227
 7.2.3 Example 2: Two-Dimensional Infiltration 231
References ... 234

8 Summary ... 235
Modelling Water Flow in Unsaturated Porous Media
Accounting for Nonlinear Permeability and Material Heterogeneity
Szymkiewicz, A.
2013, XXII, 238 p., Hardcover
ISBN: 978-3-642-23558-0