Chapter 1
Heteroepitaxy of Nonpolar and Semipolar GaN

Qian Sun and Jung Han

Abstract There has been increasing research interest in nonpolar and semipolar GaN for high brightness light-emitting diode (LED) and laser diode applications. Due to the very limited supply of GaN bulk substrates, the feasible way of obtaining cost-effective large-area nonpolar and semipolar GaN materials in the foreseeable future is still through heteroepitaxy on foreign substrates. The major challenge in the heteroepitaxy of nonpolar and semipolar GaN is the high density of stacking faults and partial dislocations, which are responsible for the poor performance of heteroepitaxial nonpolar and semipolar LEDs. This chapter presents kinetic Wulff plots (\(v\)-plots) of GaN as a novel and powerful methodology to understand and control GaN heteroepitaxy along various crystallographic orientations. Based on the \(v\)-plots, a two-step growth scheme is rationally designed and experimentally confirmed in reducing the defect density for nonpolar and semipolar GaN heteroepitaxy on planar substrates. A defect reduction model is proposed based on the correlation between the morphological evolution and the microstructural development. With the orientation of nucleation decoupled from the final film surface orientation, orientation controlled epitaxy has been demonstrated as a very promising approach for device quality nonpolar and semipolar GaN materials. The material research timeline of nonpolar and semipolar GaN is summarized and discussed.

1.1 Introduction

The discovery of a two-step growth procedure for the heteroepitaxy of GaN on \(c\)-plane sapphire [1, 2] is widely considered the key breakthrough for GaN-based materials and devices (Fig. 1.1). In the past two decades, the heteroepitaxy of GaN...
Fig. 1.1 A plot of the total publications per year for Ga-polar c-plane, nonpolar, and semipolar GaN, reflecting the research activities on the individual orientation. The arrow indicates the most crucial breakthrough in improving heteroepitaxial c-plane GaN material quality by a two-step growth scheme in the late 1980s [3] on foreign substrates has been extensively investigated, motivated by the prospects of high-brightness displays and, more recently, energy-efficient illumination using InGaN-based light-emitting diodes (LEDs). The two major challenges in the field of InGaN-based LEDs are the “efficiency droop” under a high injection current density and the “green gap” in the plot of efficiency versus emission wavelength [4]. So far most of InGaN-based LEDs are built along Ga-polar (0001) orientation, which is susceptible to the strong internal electric field induced by the spontaneous and the piezoelectric polarization in Wurtzite III-nitrides. The pronounced tilting of the energy band edges of InGaN quantum wells (QWs) causes a spatial separation between electrons and holes in the QWs and hence reduces the internal quantum efficiency (IQE) of carrier recombination. This effect gets much more pronounced as the emission wavelength is steered from blue to green and yellow ranges due to the increased indium composition in the QWs, giving a great contribution to the well-known “green gap.” The tilting of the band edges in the active region also narrows down the effective width of the QWs and hence increases the effective carrier density in the QWs, which favors Auger nonradiative recombination. Meanwhile, the effective barrier height is reduced by the tilting of the band edges, which can facilitate carrier leakage under an applied bias. Both Auger recombination and carrier leakage have been proposed as the likely mechanisms responsible for the universally observed “efficiency droop” phenomenon [5, 6]. To address these challenges, there have been concerted efforts in exploring III-Nitride materials and devices along nonpolar and semipolar crystallographic orientations [7–12]. Very promising reports of LEDs and laser diodes on nonpolar and semipolar GaN bulk substrates, in the longer wavelength of green and yellow, tend to validate the concept of crystallographic engineering [13–18]. The homoepitaxial nonpolar/semipolar
LEDs are mitigating the “green gap” [19] and have also shown significantly reduced “efficiency droop” [20–23]. However, nonpolar and semipolar GaN bulk substrates are presently very small in size and expensive in price (Fig. 1.2), because they are sliced vertically and at an inclined angle, respectively, from a thick c-plane GaN substrate prepared by hydride vapor phase epitaxy (HVPE) [24]. Given the very limited availability of HVPE GaN wafers in the foreseeable future, it is likely that heteroepitaxy on large-area, cost-effective foreign substrates will remain the viable pathway for nonpolar and semipolar devices to reach the mass market. The research activities, including both homoepitaxy and heteroepitaxy, of nonpolar and semipolar GaN are gaining more and more momentum (Fig. 1.1). However, heteroepitaxy of nonpolar (a- and m-plane) and semipolar GaN is still explored empirically and disjointedly, often giving a poor morphology with surface striations and faceted pits, and a defective microstructure, including basal-plane stacking faults (BSFs) bounded by partial dislocations (PDs) [25–33].

In this chapter, we present kinetic Wulff plots (v-plots) as a novel and effective methodology to interpret the major challenges as well as their causes in the heteroepitaxy of nonpolar and semipolar GaN, and to control the heteroepitaxial dynamics on planar substrates with a rational design of multistep growth procedure. Orientation controlled epitaxy (OCE) on nonplanar substrates is introduced and experimentally confirmed as an innovative and promising approach to further boost the material quality of heteroepitaxial nonpolar and semipolar GaN films. The major research progresses in improving nonpolar and semipolar GaN material quality are summarized in a graphic presentation.

1.2 Kinetic Wulff Plot (V-Plot) of GaN

The standard two-step growth procedure of c-plane GaN does not work for nonpolar and semipolar GaN heteroepitaxy. The conventional approach widely taken by the III-Nitride community is to optimize the growth conditions through
knob-turning exercises, which normally takes a lot of time and efforts even just for one nonbasal orientation. This time-consuming cycle needs to be repeated for the GaN heteroepitaxy along every different nonbasal orientation. Here we adopted a nonconventional methodology, kinetic Wulff plot, a three-dimensional (3D) polar plot of the growth velocities (v-plots) along the polar, semipolar, and nonpolar orientations of GaN under various MOCVD growth conditions.

The study of shape evolution and growth velocity anisotropy for GaN to date has been largely empirical. Based on the observations of GaN epitaxial lateral overgrowth (ELOG), Hiramatsu et al. [34] compiled the trends of growth velocities for (0001), {10\overline11}, and {1\overline1}22 planes. Du et al. [35] proposed a 3D v-plot for GaN using the ratios of growth velocities from the same set of facets formed by selective area growth (SAG). Their study presented a conceptual framework correlating the 3D v-plot with the GaN SAG mesa shape evolution, though the information on the v-plot for nonpolar and the entire N-polar “hemisphere” was largely speculative. In the present work, we take into account the great asymmetry between the Ga-polar and the N-polar “hemispheres” that we have determined in the construction of the 3D v-plot and demonstrated that the full-range v-plot provides crucial insights to unlock the complex heteroepitaxial dynamics, especially at faceted growth fronts of opposite curvature nature. In the case of convex growth, such as island formation during the initial phase of heteroepitaxy, the fast-growing facets grow to extinction while the slow-growing facets expand and ultimately define the island shape (Fig. 1.3a); the crystallographic planes at the minima of a v-plot therefore dictate the initial evolution [35, 36]. On the other hand, the presence of concave growth fronts is a salient feature in the coalescence stage of heteroepitaxy, as edges of islands come into contact. During concave growth, fast-growing facets expand at the expense of slow-growing facets (Fig. 1.3a) and dominate the growth fronts [35, 36]. By employing an annular-ring mask pattern (Fig. 1.3b), we can form convex and concave planes concurrently through SAG. For example, a c-plane GaN SAG mesa (Fig. 1.3d) exhibits six {10\overline11} planes on the outside, corresponding to the slow-growing convex planes, and six {1\overline1}22 planes on the inside, corresponding to the fast-growing concave planes, together with the top (0001) [35]. More complicated faceting morphology is exhibited during nonpolar a-plane (11\overline20) (Fig. 1.3e) and semipolar (1\overline1}22) GaN SAG (Fig. 1.3f) due to their reduced symmetry (Fig. 1.3c).

Consecutive SAG experiments [36] were employed to monitor the differential advances of both the convex and the concave facets, which gave a direct measure of the relative growth velocities for those orientations. Appropriate trigonometric interpretations were used to bridge the experimental data points for the construct of GaN v-plots. Figure 1.4a shows a 3D v-plot of GaN, viewed along the surface normal of (10\overline11), for a growth condition of 1,070°C, 100 mbar, and a V/III ratio of 250. False-colored shading from red to blue is used to depict the measured (or interpolated) growth velocities. We have identified cusp points (local minima) at (0001), {10\overline11}, {1\overline1}20}, {1\overline10}, and (0001). These facets are responsible for defining the shape of nucleation islands having a convex curvature on a mesoscopic scale. In addition to plotting the cusps in Fig. 1.4a, we have also included the
measured saddle points (i.e., a local minimum along one direction, but a local maximum along the orthogonal direction) determined by the concave growth fronts in the inner ring.

Given the different atomic bonding configurations on each plane [34], it is expected that the growth velocities and the 3D v-plot depend strongly on the local stoichiometry of reactants. This is confirmed by another set of differential SAG experiments under a condition of much higher V/III ratio ~1,700 and higher reactor pressure 300 mbar. In this case, the relative growth velocities of nearly all the Ga-polar planes (the northern “hemisphere”) are suppressed (Fig. 1.4f) while the equatorial portion of the v-plot pertaining to the nonpolar a-planes \{11\overline{2}0\} is increased considerably. These v-plots can be considered “finger prints” of a specific growth condition or procedure (e.g., flow modulation, co-doping, etc.) that can provide insights to a wide range of observed morphology with cross-platform insensitivity.

As discussed earlier, the minima on a 3D v-plot determine the shape evolution during the convex growth (Fig. 1.3a), manifested in the formation of islands bound by the cusp planes (Fig. 1.3d–f). The coalescence stage, in contrast, is governed by the less-understood concave growth when neighboring islands (with convex facets) come into contact. Coalescence produces a growth front that is concave along only one of the two spherical axes (azimuth, for instance) while remaining convex along the other orthogonal spherical axis (polar, for instance). The dominant planes during coalescence therefore correspond to saddle points [35, 36] in the v-plots, rather than maxima as one might suppose. The important saddle points are \{11\overline{2}2\} in the
Kinetic Wulff plots (v-plots) for a low reactor pressure and low V/III ratio condition [(a)–(e)] and a high reactor pressure and high V/III ratio condition [(f)–(j)]. For the 3D v-plots, the [0001] axis is set as $\theta = 0^\circ$, and the m-axis as $(\theta, \varphi) = (90^\circ, 0^\circ)$. The Ga-polar hemisphere [(a) and (f)] and the N-polar hemisphere [(b) and (g)] 3D v-plots are viewed at an angle of $(62^\circ, 0^\circ)$ and $(150^\circ, 0^\circ)$, respectively. (c) and (h) are the 2D v-plots for the prism planes mapped onto the basal c-plane; (d) and (i) the 2D v-plots for the orientations within the m-plane; (e) and (j) the 2D v-plots for the orientations within the a-plane. Note that a sixfold symmetry is assumed for all the v-plots and the symmetry reduction due to the mask effect during SAG is ignored in this chapter for simplicity.

Ga-polar hemisphere (Fig. 1.4a) and $\{10\overline{1}2\}$ in the N-polar hemisphere (Fig. 1.4b). Planes associated with these saddles points are of particular importance in the coalescence stage of nonpolar and semipolar GaN heteroepitaxy to the final surface morphology and the microstructural quality, as will be discussed in detail later.

1.3 Heteroepitaxy of Nonpolar GaN on Planar Substrates

Nonpolar GaN can be epitaxially grown on various foreign substrates, including a/m-plane SiC [25,28,29,37], (100) LiAlO$_2$ [38–40], r-plane sapphire [26,27,30,41–44], etc. SiC substrates are very expensive and not widely available, especially for nonpolar orientations. (100) LiAlO$_2$ has a small lattice mismatch with nonpolar m-plane GaN, but a poor thermal and chemical stability [45]. In contrast, r-plane sapphire is the most commercially available cost-effective substrates with a good thermal and chemical stability, and hence is widely used for the growth of nonpolar $\{1120\}$ a-plane GaN (a-GaN).
In the heteroepitaxy of nonpolar α-GaN, there are two major challenges, poor surface morphology and defective microstructure. On the surface of heteroepitaxial α-GaN film, there are often triangular/pentagonal faceted pits and striations along the in-plane c-axis [0001] [27], as shown in Fig. 1.5a, b. The faceted surface pits resemble very much to the concave void of the α-GaN SAG mesa (Fig. 1.5c) grown out of an annular ring opening (Fig. 1.3b) [36], indicating that the faceted surface pits are due to incomplete coalescence. To eliminate the surface pits, the vertical out-of-plane a-axis growth needs to be slowed down and the lateral in-plane growth rates be enhanced, which are favored by growth conditions of a low V/III ratio and a low reactor pressure according to the v-plots [36, 42]. The α-GaN surface striations consist of facets vicinal to the surface (1120) (Fig. 1.5a, b). The growth rates of the vicinal facets are comparable to that of the vertical a-axis growth under a low V/III and a low reactor pressure, and therefore the striations persist on the surface even after a long growth. A change in growth conditions to enlarge the difference in growth rate between the vicinal facets and the (1120) surface has been found effective in relieving the pronounced striations [42].

The other challenge in α-GaN heteroepitaxy on r-plane sapphire lies in their dissimilar structure, including the in-plane stacking mismatch and the lattice mismatch (16 and 1.3% along the m- and c-axes of GaN, respectively), which lead to a high density of microstructural defects, including BSFs bounded by PDs with a typical density of 10^5–10^6cm^{-1} and 10^{10}–10^{11}cm^{-2}, respectively [46]. These extended defects propagate along the growth axis usually throughout the nonpolar GaN film (Fig. 1.6b), and hence deteriorate material quality and device performance. It has been observed by various groups that BSFs and associated PDs are nucleated at the interface of nonpolar GaN with the underlying template (Fig. 1.6b) [28, 29, 37, 46]. During the initial growth of nonpolar/semipolar GaN on a heterogeneous template (foreign substrates, AlN buffer [29, 37], SiO$_2$ [33, 47–49], etc.), rough surface morphology [38, 39], atomic (partial) steps [40], and/or impurities on the surface of the underlying template may trigger nucleation errors at the cubic sites, especially for the N-face lateral growth. BSFs may also be formed during the coalescence of nonpolar GaN islands whose basal-plane stacking sequences are out of registry [33]. I_1 BSFs having a displacement vector with a
Fig. 1.6 Schematic LED structures built on (a) c-plane GaN/c-plane sapphire, (b) nonpolar a-plane GaN/r-plane sapphire, (c) semipolar (1122) GaN/m-plane sapphire, and (d) semipolar (1122) GaN/patterned r-plane sapphire. Perfect threading dislocations are represented by white curved lines. BSFs and their associated PDs are indicated by yellow and black straight lines. An energy diagram drawing is shown on the right side of InGaN MQWs (in green) for each structure.

c-axis component can contribute to strain relaxation [39, 50, 51]. One effective way to reduce the formation of BSFs in nonpolar GaN due to strain relaxation is to introduce composition-graded AlGaN layers between the AlN buffer and the GaN films [37].

In the study of c-plane GaN (c-GaN) growth, a 3D to 2D transition (a roughening-recovery process) was found crucial in achieving improved crystalline quality [52]. Based on the v-plots (Fig. 1.4), we designed a two-step growth procedure (beyond the initial buffer layer) for a-GaN with different V/III ratios and reactor pressure to effectively reduce the defect density [41–43].

In this study, all the a-GaN samples were grown at 1,050°C with an AlN buffer (deposited at 1,150°C) on nominally on-axis r-plane sapphire in an Aixtron horizontal MOCVD reactor. Trimethylgallium (TMGa), trimethylaluminium (TMAI), and ammonia (NH$_3$) were used as the precursors for Ga, Al, and N, respectively. Hydrogen was used as the carrier gas if not specified separately. For the baseline (sample A), 2–μm-thick a-GaN was directly grown on the AlN buffer at 1,050°C, a reactor pressure, P, of 60 mbar and a V/III ratio of 187. For all other samples (B–F) a 3D-growth stage was introduced with various P and V/III (Table 1.1) to control the growth dynamics, before returning to the baseline condition. Sample F, having the longest roughening growth stage, was grown nominally twice as thick as other samples to ensure a fully coalesced pit-free surface.
Table 1.1 Growth parameters and characterization results of nonpolar a-GaN samples A–F

<table>
<thead>
<tr>
<th>Sample</th>
<th>First-step a-GaN V/III</th>
<th>P(mbar)</th>
<th>t(min)</th>
<th>c-axis LCL (nm)</th>
<th>BSF density $\times 10^5$ cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>/</td>
<td>/</td>
<td>0</td>
<td>19</td>
<td>5.3</td>
</tr>
<tr>
<td>B</td>
<td>1,440</td>
<td>60</td>
<td>10</td>
<td>24.5</td>
<td>4.1</td>
</tr>
<tr>
<td>C</td>
<td>2,162</td>
<td>100</td>
<td>17</td>
<td>30.4</td>
<td>3.3</td>
</tr>
<tr>
<td>D</td>
<td>2,162</td>
<td>200</td>
<td>17</td>
<td>36.5</td>
<td>2.7</td>
</tr>
<tr>
<td>E</td>
<td>1,682</td>
<td>300</td>
<td>17</td>
<td>45.4</td>
<td>2.2</td>
</tr>
<tr>
<td>F (F4)</td>
<td>1,682</td>
<td>300</td>
<td>40</td>
<td>60</td>
<td>1.7</td>
</tr>
</tbody>
</table>

For sample A (one-step growth), the in situ reflectance trace exhibits instant oscillations (Fig. 1.7a) indicating a quasi-2D growth mode. According to the kinetic Wulff plots [36, 42], the vertical growth can be greatly enhanced while the lateral growth (especially along the c-axis) is slowed down under an increased V/III ratio and/or an elevated P, thus facilitating the formation of a-GaN islands with a “tall” aspect ratio. During the first-step growth of samples B–F, as the V/III ratio and/or P increase, surface becomes increasingly rough as revealed by the progressive decay of the reflectance traces, eventually down to nearly background (Fig. 1.7b–f). Once the growth is switched back to the baseline condition (for the second-step growth), island coalescence through lateral growth occurs at a rate that is inversely correlated with the extent of roughening after the first-step growth. The amplitude of reflectance oscillations decreases from sample A to F because of their increased surface striations, which can be relieved by an additional third-step growth [42].

The microstructural extended defects in a-GaN films (Fig. 1.6b) are much more complicated than those in c-GaN due to the reduced symmetry [41, 42]. a-GaN may contain not only a-, c-, and $a + c$ type dislocations with a Burgers vector (BV) of $1/3 < 11\bar{2}0 >$, $< 0001 >$, and $1/3 < 1123 >$, respectively, but also planar defects including BSFs and prismatic-plane stacking faults (PSFs). I_1, I_2, and E type BSFs are normally bounded by Frank–Shockley, Shockley, and Frank PDs with a BV of $1/6 < 2023 >$, $1/3 < 10\bar{1}0 >$, and $1/2 < 0001 >$, respectively [46]. Given the complexity of TDs/PDs, it is necessary to measure X-ray rocking curves (XRCs) for both on- and off-axes planes over a sufficiently large azimuthal and polar angular space (Fig. 1.8a, b) to obtain a comprehensive knowledge of the microstructure of a-GaN [41, 42]. The full widths at half maximum (FWHMs) were obtained through fitting with pseudo-Voigt functions. It is worthy to review the visibility criteria for stacking faults and dislocations under X-ray diffraction. For an XRC with a diffraction vector g to be broadened by a stacking fault with a displacement vector R, the $g \cdot R$ product must be a noninteger and the stacking axis has a substantial component along the X-ray rocking direction [42]. A dislocation with a Burgers vector b can broaden an XRC with a diffraction vector g, if the $g \cdot b$ product is nonzero (including integers) [42].

Figure 1.8c shows the FWHM of the on-axis $(11\bar{2}0)$ XRCs as a function of the azimuthal angle, φ. The baseline sample A (one-step growth with instant reflectance oscillations) exhibits very anisotropic FWHMs for the on-axis $(11\bar{2}0)$ XRCs, similar
Fig. 1.7 In situ optical reflectance traces (wavelength = 900 nm) of α-GaN growths for samples A (a), B (b), C (c), D (d), E (e), and F (f). The reflectance segments shaded in green in (b)–(f) correspond to the first-step 3D α-GaN growth for samples B–F. A separate series of α-GaN samples F1–F4 were grown by controlled growth interruptions during sample F growth (f) [41]
Fig. 1.8 SEM image of an α-GaN SAG mesa for the illustration of (a) on-axis and (b) off-axis XRC configurations. For $\varphi = 0$ and 90°, the X-ray rocking direction is parallel and perpendicular to the c-axis [0001], respectively. The incident and diffracted X-ray beams (red arrows) rock within a plane (shaded in green) for each diffraction plane with its index and orientation labeled in the vicinity. The (a) on-axis (1120) and (b) off-axis planes ($\chi \neq 0^\circ$), such as (1011), (2110), (3030), and (1122), were measured in symmetric and skew symmetric geometries, respectively. The FWHM of the (c) on-axis and (d) off-axis XRCs of α-GaN as a function of the azimuthal angle, ϕ. (e) The FWHMs of m-plane ($\eta\phi\theta$) XRCs ($n = 1, 2,$ and 3; $\varphi = 0^\circ, \chi = 30^\circ$); (f) the modified WH plots. The straight lines in (f) are the linear fits to the (1010) and (2020) data points of each α-GaN sample [41].
to many previous reports. However, with the introduction of a 3D growth stage, the FWHM of the on-axis (1120) XRC at $\varphi = 90^\circ$ decreases monotonically from sample A to F, and the FWHM-φ plots become less steep, indicative of improved isotropy. Given the insensitivity of (1120) diffraction to BSFs, the anisotropic broadening of the on-axis (1120) XRCs may be caused by the anisotropy in mosaic tilt and/or domain size, as well as the PSFs within the inclined a-planes with a displacement vector of $1/2 < 10\bar{1}1 >$. Mosaic twist (in-plane misalignment) is another important aspect of the microstructure and normally correlated with dislocations with an edge component. To study twist in the a-GaN films, XRC measurements were implemented in a skew symmetric geometry for off-axis planes having an inclination angle χ with respect to the on-axis (1120) at various azimuths (Fig. 1.8b). As shown in Fig. 1.8d, for all the samples the FWHM-φ plots of the off-axis XRCs are fairly flat with a small anisotropy [unlike the case of on-axis XRCs in Fig. 1.8c), implying a uniform angular distribution of dislocations with an edge component. For sample A, the off-axis XRC FWHMs are very high, ranging from 0.6 to 0.7°. With the insertion of 3D island growths, the off-axis XRC FWHMs decrease evenly for all the azimuths from samples B to F, reaching a 50% reduction for the case with a prolonged 3D growth.

By treating BSFs as boundaries between incoherently scattering domains [53], we can determine the lateral coherence length (LCL) along the c-axis and estimate the BSF density in nonpolar a-GaN film through a modified Williamson-Hall (WH) analysis [41, 42] on m-plane ($n0\bar{n}0$) diffraction ($n = 1, 2, 3; \varphi = 0^\circ, \chi = 30^\circ$) in a skew symmetric geometry with the X-ray rocking along the c-axis (Fig. 1.8b). The XRC FWHMs for all three diffractions decrease monotonically from sample A to F (Fig. 1.8e), another indicator of the clear trend of improved structural quality. It is noted that for all the samples, the FWHMs of (1010) and (2020) XRCs are much broader than that of (3030) XRC, because the former two XRCs are predominantly broadened by the short c-axis LCLs due to the presence of BSFs, which is more clearly revealed by the WH plots in Fig. 1.8f. Since (3030) diffraction is insensitive to the presence of BSFs, the (3030) data points in the WH plots (Fig. 1.8f) are significantly lower than the expected values from the linear fits to the corresponding (1010) and (2020) data points of each sample. The c-axis LCLs can be derived from the y-axis intercepts (y_o) of the linear fits, $\text{LCL} = 0.9/(2y_o)$. And the reciprocal of the LCLs gives the density of BSFs. The determined LCL and BSF density of all the samples are summarized in Table 1.1. It is clearly shown that the more the 3D process is involved in the first-step growth, the longer the c-axis LCL and the lower the BSF density (~70% reduction).

To verify the substantial reduction in the densities of both BSFs and dislocations, we examined the microstructure of a-GaN samples A and F by transmission electron microscopy (TEM) images taken from three orthogonal axes, including plan-views (Fig. 1.9a, b, e, f), and two cross-section views along the in-plane c- (Fig. 1.9c, g) and m-axes (Fig. 1.9d, h). Most of the observed BSFs were of l_1 type, normally bounded by Frank–Shockley PDs ($b = 1/6 < 2203 >$). The dislocations observed in the plan-view were all partials according to the one-to-one location correlation between the ends of the BSFs in Fig. 1.9e and the PDs in Fig. 1.9f. No perfect
Fig. 1.9 Plan-view TEM images of the one-step grown [(a) and (b)] and the two-step grown [(e) and (f)] nonpolar a-plane GaN samples. The g vectors were $\langle 1100 \rangle$ for (a) and (e), and $\langle 0002 \rangle$ for (b) and (f), to reveal the SFs and the PDs, respectively. The Frank–Shockley PDs ($b = 1/6 < 2023 >$) are indicated by the red arrows. The PSFs observed on the surface of the two-step grown a-plane GaN sample are circled in (e). Cross-section TEM images of the one-step grown [(c) and (d)] and the two-step grown a-GaN samples [(g) and (h)]. (c) and (g) were taken near the $\langle 0001 \rangle$ axis with $g = 1100$. (d) and (h) were taken near the $\langle 1100 \rangle$ axis with $g = 1120$ [42].
dislocations were observed in the view although the diffraction configurations adopted in this study did satisfy the visibility criteria for perfect dislocations. As revealed in Fig. 1.9b, f, the PD density of sample F ($\sim 6 \times 10^9 \text{cm}^{-2}$) was much lower than that of sample A ($\sim 5 \times 10^{10} \text{cm}^{-2}$), which was consistent with the 2–3 times difference in the XRC FWHMs between the two samples (Fig. 1.8). By calculating the total length of the observed BSFs divided by the image area, we estimated the BSF density in the a-GaN films to be $\sim 1 \times 10^6$ and $\sim 4 \times 10^5 \text{cm}^{-1}$ for samples A (Fig. 1.9a) and F (Fig. 1.9e), respectively. The differences between the TEM measurement and the XRC WH analysis can be accounted for by their different nature and principles [42]. But both the methods confirmed the efficacy of the two-step growth process in significantly reducing the BSF density (60–70%).

To unveil the possible mechanisms for the density reduction of BSFs and PDs, controlled growth interruptions [42] were carried out during two-step growth of sample F, giving a series of samples F1–F4 (Fig. 1.7f). Scanning electron microscope (SEM) was utilized to observe the morphological evolution. Sample F1 presented a very rough surface consisting of tall mesas separated by big voids, within which there were many ridge-like islands (roughly aligned along the c-axis) (Fig. 1.10a). After 20 min into the second-step growth (sample F2), the flat top area of the GaN mesas substantially increased, and the previous big voids were largely filled (through concave growths), leaving behind chains of pits along the c-axis (Fig. 1.10b). During the following 17.5-min growth (sample F3), the chains of pits were zipped up by lateral concave growth, producing many striations (Fig. 1.10c). For sample F4, a 90-min growth under the second-step condition fully eliminated the pits (Fig. 1.10d).

A correlation study [42] between the morphological evolution and microstructure development has revealed that Frank–Shockley PDs are strictly confined within the basal plane, because it is energetically unlikely to bend a planar defect BSF out of the basal plane, and the BSFs and the associated PDs projected along the in-plane m-axis are always straight vertical lines (Fig. 1.9d, h). But the PDs can be bent by the inclined $\{10\overline{1}\}$ and the vertical $\{10\overline{1}0\}$ growth fronts (Figs. 1.10a and 1.11c) toward the m-axis (Figs. 1.9g and 1.11a) [42], which greatly cut down the density of threading PDs while significantly extending the dimension of BSFs on the surface (Figs. 1.9e and 1.11a). For the two-step grown a-GaN sample F, the increased spacing between the BSFs in the plan-view TEM image (Fig. 1.9e) and the reduced density of the vertical lines in the cross-section TEM image along the in-plane m-axis (Fig. 1.9h), together with the knowledge of the ν-plots, provided the rational bases of our model for the BSF reduction through the two-step growth process. The first-step growth of a-GaN produces tall convex mesas separated by tiny, incipient ridge-like islands (Figs. 1.10a and 1.11c) containing many BSFs. Coalescence of those tall mesas results in concave growth fronts along $[0001]$, with four of the six $\{10\overline{1}2\}$ facets forming an overhanging structure next to the incipient islands (Figs. 1.10a and 1.11c). These fast-growing $\{10\overline{1}2\}$ facets advance and sweep laterally along $[0001]$ over the incipient islands, burying and blocking the vertical propagation of BSFs as depicted in Fig. 1.11a, b [42]. Our model of BSF and PD reduction has been supported by the one-to-one location correlation
between SEM (Fig. 1.11c) and monochromatic cathodoluminescence (CL) images (Fig. 1.11d) of the same area of a-GaN sample F1. Most of the CL emission came from the regions “behind” the over-hanging {1012} growth fronts circled by the dash lines, indicating a good material quality with few defects.

1.4 Heteroepitaxy of Semipolar GaN on Planar Substrates

M-plane sapphire (m-sapphire) is widely used for semipolar GaN growth, but can produce both nonpolar (1010) m-GaN and two kinds of semipolar orientations, (1122) and (1013) [32, 54, 55]. When m-sapphire surface is not thoroughly nitridized, the as-grown GaN surface often consists of both (1122) orientation and (1013) twinned grains (Fig. 1.12). And the grain boundaries prohibited a complete coalescence. M-sapphire nitridation is found very effective to suppress the formation of mixed phase (1013) grains [32, 54] and consistently obtain (1122) GaN [55, 56]. Nitridation breaks the surface symmetry of m-sapphire [55] and favors the nucleation of (1122) orientation with N-polarity [34]. The
Fig. 1.11 Schematic model of the BSF blocking and the PD bending during the two-step growth of nonpolar a-plane GaN, cross-section viewed along the c-axis [0001] (a) and the m-axis $[1\bar{1}00]$ (b). The blue dashed lines represent the a-plane GaN growth fronts, and the red solid lines are the PDs. BSFs are shown as the shaded area in (a) and the straight black lines in (b). The vertical black lines overlap with the red lines in (b), indicating that most of the BSFs are bounded by PDs. [42] SEM (c) and monochromatic (363 nm) CL image (d) of the same surface area of sample F1 a-plane GaN islands with the growth intentionally stopped at the end of the first step roughening stage. The $\{10\bar{1}2\}$ overhanging lateral overgrowth fronts toward the [0001] circled in (c) show a good position correlation with most of the emitting regions (with a low defect density) in (d).

In-plane epitaxial relationships between $(1\bar{1}22)$ GaN and m-sapphire (Fig. 1.6c) are $[1\bar{1}00]_{\text{GaN}}||[11\bar{2}0]_{\text{sapphire}}$ and $[1\bar{1}23]_{\text{GaN}}||[0001]_{\text{sapphire}}$ with a lattice mismatch of 16.1 and -6.3%, respectively. Semipolar $(1\bar{1}22)$ GaN heteroepitaxy shares the same challenge as nonpolar GaN, i.e., the high density of structural defects. Although BSFs and their bounding PDs confined within the basal plane are inclined to the $(1\bar{1}22)$ surface by 58.4° (Fig. 1.6c) [33], they can still penetrate the entire semipolar GaN film and affect the material quality and device performance.

The study of semipolar $(1\bar{1}22)$ GaN growth on nitridized m-sapphire was not carried out in an empirical manner by turning the knobs for the optimization of growth parameters. Instead, with the knowledge of the ν-plots, we designed a two-step growth procedure for $(1\bar{1}22)$ GaN to improve the material quality [56], similar to that for nonpolar a-GaN [41,42]. The two-step growth procedure for $(1\bar{1}22)$ GaN...
Involves a roughening-recovery process to actively induce dislocation bending and BSF blocking [42]. All the semipolar (1122) GaN samples were grown on nominally on-axis m-plane sapphire substrates which were nitridized during the temperature ramping up to 1,050°C in a mixture of NH3 and N2. In our previous report, we used a high-temperature AlN buffer for the growth of smooth (1122) GaN [56]. Here we show that a low-temperature (LT) GaN buffer (deposited at 600°C) can also give mirror-like (1122) GaN. After a thermal annealing of the LT-GaN buffer, (1122) GaN was grown at 1,000°C with 2 SLM NH3 and 119 μmol/min TMGa. The difference in the growth parameters for samples S1–S4 is summarized in Table 1.2.

Table 1.2 Growth parameters of semipolar (11–22) GaN samples S1–S4

<table>
<thead>
<tr>
<th>Sample</th>
<th>The first-step GaN</th>
<th>The second-step GaN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(mbar)</td>
<td>t(min)</td>
</tr>
<tr>
<td>S1</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>S2</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>S3</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>S4</td>
<td>300</td>
<td>15</td>
</tr>
</tbody>
</table>

It should be pointed out the annealing behavior of the semipolar LT-GaN buffer is very different from that of the Ga-polar c-plane LT-GaN buffer [52]. As shown in Fig. 1.13, it took much longer time to anneal a semipolar LT-GaN buffer and get the in situ optical reflectance back close to the background level, and no “nose-like” peak was ever observed throughout the annealing process. For sample S1, the HT-GaN layer was grown under the one-step condition with instant oscillations (Fig. 1.13a) reflecting a quasi-two-dimensional (quasi-2D) growth mode. As we increased the reactor pressure from 60 to 200 mbar for the initial HT-GaN growth of sample S2, the reflectance began to decay in both average and amplitude from the very beginning (Fig. 1.13b), an indicator of 3D islanding growth. Once the growth condition was switched back to the second-step condition (sample S1 condition), the reflectance was gradually recovered to sustained 2D oscillations. The final...
reflectance average for sample S2 was lower than that of sample S1 because of the striations on the sample S2 surface that were clearly observed under Nomarski optical microscope (not shown). From sample S2 to S3, we further elevated the reactor pressure to 300 mbar for the first-step GaN growth, the reflectance trace decayed in a faster pace to a lower level within the same growth time, and the recovery of the reflectance was accordingly much slower (Fig. 1.13c). For sample S4, the first-step growth time was increased to examine the effect of prolonged island growth (Fig. 1.13d). It is speculated that the difficulty in achieving a rapid recovery of the (112\text{2}) growth surface when it is very rough is because (112\text{2}) is a saddle point in the v-plots (Fig. 1.4a), a local minimum along the polar axis but a local maximum within the basal plane [36, 42].

Similar to the case of nonpolar GaN, the configuration of the planar and line defects in (112\text{2}) GaN is also quite complicated (Fig. 1.6c) [56]. To obtain a comprehensive knowledge of the microstructure, we also measured XRCs for both on-axis and off-axis diffraction planes (Fig. 1.14a, b). Figure 1.14c shows the FWHM of the on-axis (112\text{2}) XRCs as a function of the azimuthal angle, φ. The baseline sample S1 (one-step growth with instant reflectance oscillations) exhibited very anisotropic FWHMs for the on-axis (112\text{2}) XRCs, similar to previous reports.
Fig. 1.14 SEM perspective side-view of a semipolar (112\(_2\)) GaN SAG mesa labeled with orientations for the illustration of (a) on-axis and (b) off-axis XRC configurations. For \(\varphi = 0\) and 90°, the X-ray rocking direction is parallel to [1123] and the in-plane \(m\)-axis [1100], respectively. The incident and diffracted X-ray beams (red arrows) rock within a plane (shaded in green) for each diffraction plane with its index and orientation labeled in the vicinity. The (a) on-axis (112\(_2\)) (\(\chi = 0°\)) and (b) off-axis planes (\(\chi \neq 0°\)), such as (1011), (1010), (1120), and (0002), were measured in symmetric and skew symmetric geometries, respectively. The FWHM of the (c) on-axis and (d) off-axis XRCs of semipolar (112\(_2\)) GaN as a function of the azimuthal angle, \(\varphi\). (e) The FWHMs of \(m\)-plane \((n0\varphi0)\) XRCs (\(n = 1, 2,\) and 3). (f) The FWHMs of \(c\)-plane \((000n)\) XRCs (\(n = 2, 4,\) and 6). (g) The modified WH plots of the \(m\)-plane \((n0\varphi0)\) XRCs. The straight lines in (g) are the linear fits to the (101\(_1\)) and (202\(_0\)) data points of each (112\(_2\)) GaN sample. (h) The modified WH plots of the \(c\)-plane \((000n)\) XRCs.
However, with the introduction of a 3D growth stage, the FWHM of the on-axis \((1\bar{1}2\bar{2})\) XRC at \(\phi = 90^\circ\) decreases monotonically from sample S1 to S4 by \(\sim 52\%\), and the FWHM-\(\phi\) plots become less steep, indicative of improved microstructural quality with a greatly reduced anisotropy. All the BSFs (\(I_1\), \(I_2\), and \(E\)) are not visible under \((1\bar{1}2\bar{2})\) diffraction, but the PDs can contribute to the broadening of the on-axis \((1\bar{1}2\bar{2})\) XRCs. In addition, the \((1\bar{1}2\bar{2})\) XRCs at \(\phi = 90^\circ\) can also detect PSFs with a displacement vector of \(1/2 < 10\bar{1}\bar{1} >\), which may be the dominant broadening factor to the \((1\bar{1}2\bar{2})\) XRCs at \(\phi = 90^\circ\) of sample S1.

In order to evaluate the effect of the two-step growth procedure on the mosaic twist (in-plane misalignment) within the \((1\bar{1}2\bar{2})\) GaN films, we measured XRCs in a skew symmetric geometry for off-axis planes having an inclination angle \(\chi\) with respect to the on-axis \((1\bar{1}2\bar{2})\) at various azimuths (Fig. 1.14b). Figure 1.14d shows that from sample S1 to S4, the \((10\bar{1}1)\) and \((10\bar{1}0)\) XRCs were narrowed down by \(\sim 24\%\), and the \((1\bar{1}2\bar{0})\) and \((0002)\) XRCs by \(\sim 50\%\), which evidenced that the two-step growth technique could significantly improve the microstructural quality. It is noted that for all the samples, the XRC FWHMs of \((10\bar{1}0)\) and \((0002)\) XRCs were much larger than that of \((1\bar{1}2\bar{0})\) due to their different broadening factors [56]. It is known that \((1\bar{1}2\bar{0})\) diffraction is not sensitive to the presence of BSFs, in contrast to \((10\bar{1}0)\) \([41, 42]\).

As shown in Fig. 1.14e, as the diffraction order \(n\) increased from 1 to 3, the \((n0\bar{n}0)\) XRC FWHM decreased by \(\sim 67\%\) for all the samples. The \((10\bar{1}10)\) XRCs were greatly broadened by BSFs \([41, 42, 53, 57]\), although the X-ray rocking direction was not exactly along but at an angle to the \(c\)-axis. But the FWHMs \((0.2 \sim 0.3^\circ)\) of the \((30\bar{3}0)\) XRCs (insensitive to the presence of BSFs according to the visibility criteria \([41, 42, 53, 57]\)) were fairly close to the dynamic range of the other off-axis XRCs linewidths (Fig. 1.14d). In contrast, as the diffraction order \(n\) increased, the \(c\)-plane \((000n)\) XRC FWHMs remained similar (Fig. 1.14f), which was because neither BSFs nor PSFs are visible under the \((000n)\) diffraction \((n = 2, 4, \text{ and } 6)\). Therefore, the \(c\)-plane XRCs were mainly broadened by PDs and/or perfect dislocations with Burgers vectors having a \(c\)-axis component. In the WH plots, the three data points of the \((000n)\) diffraction could be linearly fit by a straight line (Fig. 1.14h), but the \((30\bar{3}0)\) data points significantly deviated from the linear fits of the corresponding \((10\bar{1}10)\) and \((20\bar{2}0)\) data points (Fig. 1.14g) \([41, 42, 53]\), which supported our assignment of the broadening mechanisms for the \(c\)- and \(m\)-plane XRCs.

From samples S1 to S4, the monotonic reduction of the \(m\)- and \(c\)-plane XRC FWHMs (Fig. 1.14c–f) indicated that a significant decrease in BSF and dislocation densities, respectively. It is believed that during the first-step 3D island growth, some dislocations bent at the inclined growth fronts \([42, 58]\) and annihilated via their interaction with each other. And the reduction of BSF density in the semipolar \((1\bar{1}2\bar{2})\) GaN films also comes from the blocking of BSFs by the lateral growth of tall mesas over small islands. The significant improvement of \((1\bar{1}2\bar{2})\) GaN microstructural quality has led to bright photoluminescence (PL) of blue, green, green-yellow, and yellow \((1\bar{1}2\bar{2})\) InGaN/GaN MQWs grown on GaN template (sample S4), as shown in Fig. 1.15. It should be mentioned that InGaN MQWs
Fig. 1.15 Room temperature (RT) PL spectra of blue, green, green–yellow, and yellow semipolar (11\overline{2}) InGaN/GaN MQWs, and their photos in the corresponding inset. The small peak near 445 nm was from the nonlasing line of the He-Cd laser.
deposited on one-step grown (1122) GaN template (sample S1) did not give any emission because of the very high density of defects.

1.5 OCE of Semipolar GaN on Nonplanar Substrates

Due to the high density of extended defects (BSFs and PDs), semipolar (1122) InGaN/GaN MQWs and LEDs are still much dimmer than Ga-polar c-plane structures [3,59,60]. There have been various reports using ELOG to filter out part of the extended defects from the underlying GaN template, although the improvement of material quality is limited to only the Ga-face ELOG wings. It should be pointed out that, however, the defects in the template still penetrate into the mask opening regions, and moreover new BSFs and PDs are often generated in the N-face ELOG wings due to the interaction of the dielectric mask with the N-face growth front [47–49]. Thus, the ELOG GaN films have very limited useable area for device growth and fabrication.

A practical way of obtaining large-area SF-free nonpolar and semipolar GaN film is through OCE (Fig. 1.6d). The key innovation here is to decouple the nucleation orientation and the final coalesced surface orientation. To achieve this, sapphire substrate patterning, which so far has been mainly utilized to enhance light extraction, is required to expose certain facets (often c-plane) of sapphire for the nucleation of c-plane GaN with a good selectivity. Then the GaN stripes grown on the sapphire sidewall facets coalesce (often takes a long growth) into a continuous film with a nonpolar or semipolar surface orientation, depending on the geometric configuration between sapphire substrate and GaN film [61–65]. Patterned r-plane sapphire is an excellent platform for semipolar (1122) GaN, because the angle (~ 58°) between (0001) and (1012) of sapphire coincides with the angle (58.4°) between (0001) and (1122) of GaN (Fig. 1.6d) [64,65]. The OCE idea has also been successfully implemented to obtain nonpolar and semipolar GaN on patterned Si substrates [66–71].

The as-patterned r-sapphire (with no mask on the mesa) was thermally cleaned in H2 at 1,100°C, followed by a deposition of a LT-AlN buffer at 500°C. The LT-AlN buffer was annealed during the temperature ramping up. The GaN growth was designed with three stages (1) to achieve selective nucleation of c-GaN on the sapphire sidewall facets (Fig. 1.16a), (2) to control the cross-section shape evolution of the GaN stripes to reach an ideal geometric configuration for coalescence (Fig. 1.16b), and (3) to have a rapid coalescence of the GaN stripes into a flat film (Fig. 1.16c). The v-plots of GaN (Fig. 1.4) again provided a very useful guidance in adjusting the growth conditions for the shaping and the coalescence of the stripes. A high reactor pressure and a low V/III ratio were used to promote the growth along the c-axis [0001] to block the BSFs and PDs in the N-face region of the neighboring stripes (Fig. 1.16b). A low reactor pressure and a relatively high V/III ratio were utilized to facilitate the stripe coalescence. The as-grown semipolar (1122) GaN film shows very narrow XRCs (not shown here) for all the on- and off-axis diffractions,
with a linewidth ranging from 0.078 to 0.15°. The linewidths are about two- to fivefold narrower than those of the semipolar (1122) GaN grown on planar m-plane sapphire (Fig. 1.14), indicating a remarkable reduction in defect density, which is confirmed by TEM. In fact, the nearly BSF-free semipolar (1122) GaN film obtained on patterned r-plane sapphire has a crystalline quality comparable to that of c-plane GaN on c-plane sapphire. High brightness blue LEDs have been achieved on the semipolar (1122) GaN grown via OCE with a great spectral purity. The details of the semipolar (1122) GaN OCE growth and LED performance will be reported elsewhere.

1.6 Summary and Outlook

In this chapter, we highlighted the major challenges in the heteroepitaxy of nonpolar and semipolar GaN, poor surface morphology and microstructural defects, including BSFs and their associated PDs. Kinetic Wulff plots (v-plots) have been proven as a powerful tool in understanding and controlling GaN heteroepitaxy along various orientations. Based on the v-plots, a two-step growth scheme has been designed and implemented to improve the surface morphology and reduce the defect density through dislocation bending and BSF blocking for both nonpolar a-GaN and semipolar (1122) GaN. OCE as an emerging growth technology is producing device-quality heteroepitaxial semipolar GaN film, with a dislocation density comparable to that of c-GaN. Besides the approaches discussed earlier, SiNx and ScN interlayers [30, 72] have also been reported as an effective method in filtering the BSFs and
PDs in nonpolar and semipolar GaN. The research timeline of nonpolar/semipolar GaN material quality by various groups is shown in Fig. 1.17. A combination of OCE and interlayers may be one of the ultimate solutions to further accelerate the research course of nonpolar and semipolar GaN (Fig. 1.1).

The performance gap between homoepitaxial and heteroepitaxial nonpolar/semipolar devices results from mainly the dramatic difference in defect density. The PDs bounding the BSFs are nonradiative recombination centers in nonpolar/semipolar GaN [73]. Therefore, most of the reported heteroepitaxial semipolar InGaN/GaN MQW LEDs were much dimmer than the Ga-polar c-plane LED grown under the same condition [3, 60]. The I–V characteristic of heteroepitaxial semipolar LED often exhibited a strong leakage behavior [3], which is probably related to the presence of the structural defects. In the long wavelength nonpolar/semipolar InGaN/GaN MQWs, the high strain can trigger the formation of new BSFs and PDs for both homoepitaxial and heteroepitaxial GaN substrates.
Moreover, in the semipolar (Al,In)GaN heterostructures, the (0001) slip plane is inclined with respect to the surface normal, and hence there is a component of shear stress on the slip plane which can cause misfit dislocation formation at the heterointerfaces [74–76]. The misfit dislocations together with the BSFs and PDs can further compromise the semipolar LED performance. Heteroepitaxial semipolar green LED wafer surface often appeared darkish when the growth temperature of p-GaN was high, indicating that the semipolar InGaN/GaN MQWs were not as robust as the c-plane MQWs against baking probably also due to the high density of extended defects. In addition, excess flow of Cp₂Mg is needed to achieve p-type (1122) GaN because of the lower incorporation efficiency of Mg [77].

Acknowledgements This work was supported by the US DOE under Contract DE-FC26-07NT43227 and the US DOE office of Basic Energy Sciences under Contract DE-SC0001134. Christopher D. Yerino helped compiling the v-plots of GaN through consecutive SAG experiments under various growth conditions. Benjamin Leung carried out the OCE experiments for the growth of semipolar (1122) GaN on patterned r-plane sapphire. The authors are thankful to Prof. Hyung Koun Cho and Mr. Bo Hyun Kong at Sungkyunkwan University (Korea) for their great help with the TEM measurements, and Dr. T.-S. Ko at National Chiao Tung University (Taiwan) for his help with the CL measurement.

References

3. Q. Sun, J. Han, Proc. SPIE 7617, 761717 (2010)
1 Heteroepitaxy of Nonpolar and Semipolar GaN

56. Q. Sun, B. Leung, C.D. Yerino, Y. Zhang, J. Han, Appl. Phys. Lett. 95, 231904 (2009)

