Contents

1 Boundedness in Probability and Stability of Stochastic Processes Defined by Differential Equations ... 1
1.1 Brief Review of Prerequisites from Probability Theory 1
1.2 Dissipative Systems of Differential Equations 4
1.3 Stochastic Processes as Solutions of Differential Equations 9
1.4 Boundedness in Probability of Stochastic Processes Defined by
 Systems of Differential Equations 13
1.5 Stability .. 22
1.6 Stability of Randomly Perturbed Deterministic Systems 26
1.7 Estimation of a Certain Functional of a Gaussian Process 31
1.8 Linear Systems .. 36

2 Stationary and Periodic Solutions of Differential Equations 43
2.1 Stationary and Periodic Stochastic Processes. Convergence of
 Stochastic Processes ... 43
2.2 Existence Conditions for Stationary and Periodic Solutions 46
2.3 Special Existence Conditions for Stationary and Periodic Solutions 51
2.4 Conditions for Convergence to a Periodic Solution 55

3 Markov Processes and Stochastic Differential Equations 59
3.1 Definition of Markov Processes 59
3.2 Stationary and Periodic Markov Processes 63
3.3 Stochastic Differential Equations (SDE) 67
3.4 Conditions for Regularity of the Solution 74
3.5 Stationary and Periodic Solutions of Stochastic Differential
 Equations ... 79
3.6 Stochastic Equations and Partial Differential Equations 83
3.7 Conditions for Recurrence and Finiteness of Mean Recurrence Time 89
3.8 Further Conditions for Recurrence and Finiteness of Mean
 Recurrence Time .. 93
Contents

4 Ergodic Properties of Solutions of Stochastic Equations 99
 4.1 Kolmogorov Classification of Markov Chains with Countably Many States .. 99
 4.2 Recurrence and Transience .. 101
 4.3 Positive and Null Recurrent Processes 105
 4.4 Existence of a Stationary Distribution 106
 4.5 Strong Law of Large Numbers 109
 4.6 Some Auxiliary Results ... 112
 4.7 Existence of the Limit of the Transition Probability Function ... 117
 4.8 Some Generalizations .. 119
 4.9 Stabilization of the Solution of the Cauchy Problem for a Parabolic Equation 122
 4.10 Limit Relations for Null Recurrent Processes 127
 4.11 Limit Relations for Null Recurrent Processes (Continued) 131
 4.12 Arcsine Law and One Generalization 136

5 Stability of Stochastic Differential Equations 145
 5.1 Statement of the Problem .. 145
 5.2 Some Auxiliary Results ... 148
 5.3 Stability in Probability ... 152
 5.4 Asymptotic Stability in Probability and Instability 155
 5.5 Examples .. 159
 5.6 Differentiability of Solutions of Stochastic Equations with Respect to the Initial Conditions 165
 5.7 Exponential p-Stability and q-Instability 171
 5.8 Almost Sure Exponential Stability 175

6 Systems of Linear Stochastic Equations 177
 6.1 One-Dimensional Systems 177
 6.2 Equations for Moments ... 182
 6.3 Exponential p-Stability and q-Instability 184
 6.4 Exponential p-Stability and q-Instability (Continued) 188
 6.5 Uniform Stability in the Large 192
 6.6 Stability of Products of Independent Matrices 196
 6.7 Asymptotic Stability of Linear Systems with Constant Coefficients ... 201
 6.8 Systems with Constant Coefficients (Continued) 206
 6.9 Two Examples .. 211
 6.10 n-th Order Equations .. 216
 6.11 Stochastic Stability in the Strong and Weak Senses 223

7 Some Special Problems in the Theory of Stability of SDE’s 227
 7.1 Stability in the First Approximation 227
 7.2 Instability in the First Approximation 229
 7.3 Two Examples .. 231
 7.4 Stability Under Damped Random Perturbations 234
 7.5 Application to Stochastic Approximation 237
Contents

7.6 Stochastic Approximations when the Regression Equation Has Several Roots 239

7.7 Some Generalizations ... 245

- 7.7.1 Stability and Excessive Functions 245
- 7.7.2 Stability of the Invariant Set 247
- 7.7.3 Equations Whose Coefficients Are Markov Processes 247
- 7.7.4 Stability Under Persistent Perturbation by White Noise ... 249
- 7.7.5 Boundedness in Probability of the Output Process of a Nonlinear Stochastic System 251

8 Stabilization of Controlled Stochastic Systems (This chapter was written jointly with M.B. Nevelson) 253

- 8.1 Preliminary Remarks .. 253
- 8.2 Bellman’s Principle ... 254
- 8.3 Linear Systems ... 258
- 8.4 Method of Successive Approximations 260

Appendix A Appendix to the First English Edition 265

- A.1 Moment Stability and Almost Sure Stability for Linear Systems of Equations Whose Coefficients are Markov Processes 265
- A.2 Almost Sure Stability of the Paths of One-Dimensional Diffusion Processes ... 269
- A.3 Reduction Principle .. 275
- A.4 Some Further Results 279

Appendix B Appendix to the Second Edition. Moment Lyapunov Exponents and Stability Index (Written jointly with G.N. Milstein) 281

- B.1 Preliminaries ... 281
- B.2 Basic Theorems ... 285
 - B.2.1 Nondegeneracy Conditions 285
 - B.2.2 Semigroups of Positive Compact Operators and Moment Lyapunov Exponents 286
 - B.2.3 Generator of the Process Λ 294
 - B.2.4 Generator of Semigroup $T_t(p)f(\lambda)$ 296
 - B.2.5 Various Representations of Semigroup $T_t(p)f(\lambda)$. . 299
- B.3 Stability Index ... 303
 - B.3.1 Stability Index for Linear Stochastic Differential Equations ... 303
 - B.3.2 Stability Index for Nonlinear SDEs 305
- B.4 Moment Lyapunov Exponent and Stability Index for System with Small Noise 309
 - B.4.1 Introduction and Statement of Problem 309
 - B.4.2 Method of Asymptotic Expansion 312
 - B.4.3 Stability Index 316
 - B.4.4 Applications 319

References .. 323

Index ... 335
Stochastic Stability of Differential Equations
Khasminskii, R.
2012, XVIII, 342 p., Hardcover
ISBN: 978-3-642-23279-4