Contents

1 An Introduction to Linear-Scaling Ab Initio Calculations

1.1 The Challenges of Spatial and Electronic Complexity 1
1.2 Outline of Dissertation .. 2
1.3 The Born–Oppenheimer Approximation ... 5
1.4 Density Functional Theory ... 7
1.5 The Kohn–Sham Equations .. 10
1.6 Exchange, Correlation and the Local Density Approximation 13
1.7 Spin-Density Functional Theory ... 15
1.8 The Pseudopotential Approximation .. 16
1.9 Periodicity and Brillouin Zone Sampling .. 20
1.10 The Plane-Wave and Psinc Basis Sets ... 22
1.11 Density-Matrix Formulation of DFT ... 25
1.12 Wannier Function and Density-Matrix Localisation 27
1.13 The ONETEP Method ... 29

References ... 32

2 Linear-Scaling DFT + U for Large Strongly-Correlated Systems

2.1 Strongly-Correlated Systems .. 37
2.2 The DFT + U Method ... 40
2.3 Framework for Linear-Scaling DFT + U ... 45
2.4 Variations with Respect to the Density Kernel ... 48
2.5 Variations with Respect to the NGWFs ... 52
2.6 Variations with Respect to Ionic Positions .. 54
2.7 Scaling Tests on Nickel Oxide Nano-Clusters ... 56
 2.7.1 Computational Methodology ... 56
 2.7.2 Scaling of Computational Effort for DFT + U 57
2.8 Concluding Remarks .. 60

References ... 61
3 Projector Self-Consistent DFT + U Using Nonorthogonal Generalised Wannier Functions

3.1 Localised Strongly-Correlated Subspaces
3.2 Methodological Framework
3.3 The Spatial Form of Hydrogenic Subspaces
3.4 Wannier Functions for Localised Subspaces
3.5 The Self-Consistent Projector Method
3.6 Application to Ligated Iron Porphyrins
 3.6.1 Iron Porphyrin Derivatives
 3.6.2 Computational Methodology
 3.6.3 U and Z-Dependence of Magnetic Dipole Moments and Interaction Energies
 3.6.4 Z-Dependence of Subspace Occupancy in FeP and FeP(CO)
 3.6.5 Z-Dependent Kohn–Sham Bandgap of FeP and FeP(CO)
 3.6.6 Z-Dependent Electric Dipole Moments of FeP and FeP(CO)
 3.6.7 Dependence on the Interaction Parameter U
3.7 Convergence of the Projector Self-Consistency Algorithm
3.8 Computational Cost of Projector Self-Consistency
3.9 Forces in Projector Self-Consistent DFT + U
3.10 Concluding Remarks

References

4 Subspace Representations in Ab Initio Methods for Strongly Correlated Systems

4.1 Motivation
4.2 Nonorthogonal Representations of the Occupancy Matrix
 4.2.1 The “Full” and “On-Site” Representations
 4.2.2 The “Dual” Representation
 4.2.3 Requirement for a Subspace-Localised Hermitian Projection Operator
 4.2.4 The “Tensorial” Representation
4.3 Application to the DFT + U Method
 4.3.1 The Tensorially Invariant DFT + U Functional
 4.3.2 DFT + U Potential and Ionic Forces
 4.3.3 The Case of Orthonormal Hubbard Projectors
 4.3.4 Invariance Under Generalised Löwdin Transforms
4.4 Strongly-Correlated Insulator: Bulk Nickel Oxide
 4.4.1 Computational Methodology
 4.4.2 Occupancies and Magnetic Dipole Moments
 4.4.3 Kohn–Sham Eigenspectra

References
7.2 The Constrained Random Phase Approximation 179
 7.2.1 The Independent-Particle Green’s Function and Irreducible Polarisability Operator 180
 7.2.2 Spectral Functions 181
 7.2.3 The Low-Energy Hubbard Model of cRPA 182
 7.2.4 Dielectric Function, Screened Coulomb Interaction and Hubbard U Tensor 183
 7.2.5 Making Use of a Frequency-Dependent U 185
7.3 Interaction Tensor Update with Hubbard Projectors 186
 7.3.1 Geometry of the Hubbard Support Manifolds 187
 7.3.2 First Order Changes to the Hubbard U Tensor 188
 7.3.3 Invariance of the Interaction Anisotropy 190
 7.3.4 Applicability of the Method 192
 7.3.5 Changes in Non-Invariant Scalars 193
7.4 Concluding Remarks 195
References 196

8 Discussion and Conclusion 199
 8.1 Synopsis 199
 8.2 Future Work 201

Appendix: Geometric Observations 203

Curriculum Vitae 211
Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems
O'Regan, D.D.
2012, XVI, 216 p., Hardcover
ISBN: 978-3-642-23237-4