Contents

1 Introduction and Background 1
 1.1 Thesis Summary 1
 1.2 The “Step Economy” 2
 1.3 The Arene–Alkene Meta Photocycloaddition 4
 1.3.1 Introduction: Photocycloaddition of an Alkene
 to a Benzene Derivative 4
 1.3.2 Mechanism of the Meta Photocycloaddition Reaction ... 9
 1.3.3 Regio- and Stereo-Selectivity Issues 11
 1.3.4 The Importance of Tether Length 15
 1.3.5 Reactions of Meta Photocycloadducts and Their Use
 in Natural Product Synthesis 17
 1.4 Previous Penkett Group Studies: Palladium Catalyzed
 Reactions of Meta Photocycloadducts 21
 References ... 24

2 Discovery of the Double [3+2] Photocycloaddition 27
 2.1 Introduction: Original Aim 27
 2.2 Preliminary Studies 28
 2.3 Discovery of the Double [3+2] Photocycloaddition
 and Structural Elucidation 34
 References ... 39

3 A Brief Discussion on Fenestranes 41
 3.1 Introduction 41
 3.2 Synthesis of Fenestranes 42
 3.3 Naturally Occurring Fenestranes 45
 References ... 47
 4.1 Investigating the Synthesis of Dioxafenestrane 4 49
 4.2 Thermally Induced Fragmentation-Re-Addition of a Linear Meta Adduct 54
 4.3 Deuterium Study of Dioxafenestrane 4 and Characterization of the Oxasilphinene Product 5 56
 4.4 Triplet Sensitization and Quenching Studies: Optimisation and Mechanistic Analysis of the Double [3+2] Photocycloaddition .. 60
 4.5 Mechanistic Summary for the Irradiation of the Acetal Photosubstrate 1 63
 4.6 Synthesis of a Methyl Dioxafenestrane and Confirmation of Oxygen’s Importance in the Pathway Toward Silphinene 5 64
 4.7 Attempted Synthesis of Dioxafenestranes from Photosubstrates with an Additional Aromatic Para Substituent 67
 4.8 Synthesis of Oxafenestranes Derived from Ether Photosubstrates .. 71
 4.8.1 Introduction .. 71
 4.8.2 Synthesis of Two Methoxy Oxafenestranes 72
 4.8.3 Synthesis of Two Methyl Oxafenestranes 78
 4.9 Attempted Formation of an All Carbon [5.5.5.5] Fenestrane 81
 4.10 Attempted Formation of a [5.5.5.6] Fenestrane 82
 4.11 Synthesis of a Novel Azafenestrane 85
 4.12 Attempted Double [3+2] Photocycloaddition Reaction Involving a C=N Double Bond .. 93
References .. 98

5 Attempted Synthesis of a “Criss-Cross” Double [3+2] Photocycloadduct .. 101
 5.1 Introduction .. 101
 5.2 Irradiation of Butenyl Tether Photosubstrate 321 101
 5.3 Irradiation of Pentenyl Tether Photosubstrate 322 104
References .. 105

6 Attempts Toward the Synthesis of Alternative Structures Via the Double [3+2] Photocycloaddition .. 107
 6.1 Introduction .. 107
 6.2 Attempt Toward a Type II Motif .. 107
 6.3 Attempt Toward a Type III Motif .. 109
References .. 111
The Double [3+2] Photocycloaddition Reaction
Woolford, J.A.
2011, XVI, 184 p., Hardcover
ISBN: 978-3-642-22859-9