Contents

Preface ... xiii
Acknowledgments xv
List of figures .. xvii
List of tables ... xxi

1 Introduction .. 1
 1.1 Why Back-of-the-Envelope engineering? 1
 1.1.1 Back-of-the-Envelope engineering; an important adaptation and survival skill for students and practicing engineers .. 2
 1.1.2 Design of a high school science fair electro-mechanical robot 2
 1.1.3 Design of a new commercial rocket launch vehicle for a senior engineering student’s design project 3
 1.1.4 Preliminary design of a new telescope system by an engineer transferred to a new optical project . 3
 1.1.5 Examining the principles and ideas behind Back-of-the-Envelope estimation 4
 1.2 What is a Back-of-the-Envelope engineering estimate? 4
 1.2.1 Tradeoff between complexity and accuracy ... 5
 1.2.2 Back-of-the-Envelope reasoning ... 6
 1.2.3 Fermi problems ... 7
 1.2.4 An engineering Fermi problem 8
 1.3 General guidelines for building a good engineering model 12
 1.3.1 Step by step towards estimation 13
 1.3.2 Quick-Fire estimates 14
Contents

1.4 Quick-Fire estimate of cargo mass delivered to orbit by the Space Shuttle 15
1.4.1 Cargo mass problem definition ... 15
1.4.2 Level-0 estimate: the empirical “rule of thumb” model 16
1.4.3 Level-1 estimate: cargo mass using a single stage mathematical model based on the ideal rocket velocity equation 17
1.4.4 Level-2 estimate: cargo mass using a two stage vehicle model based on the ideal rocket velocity equation 21
1.4.5 Level-3 estimate: cargo mass delivered by a two stage vehicle; based on a revised estimate for second stage structural mass fraction ... 23
1.4.6 Impact of added knowledge and degree of model complexity 25
1.4.7 Moving from the Shuttle to the Hubble Space Telescope 27

1.5 Estimating the size of the optical system for the Hubble Space Telescope 28
1.5.1 System requirements for the HST ... 29
1.5.2 Shuttle constraint on HST size .. 29
1.5.3 Estimating the length of the HST optical package 30

1.6 Concluding remarks .. 35
1.7 Outline of this book ... 35
1.8 References ... 38

2 Design of a high school science-fair electro-mechanical robot .. 41
2.1 The Robot-Kicker Science Fair Project .. 41
2.2 Back-of-the-Envelope model and analysis for a solenoid kicking device .. 41
2.2.1 Defining basic dimensions and required soccer ball velocity 42
2.2.2 Setting up a BotE model for the solenoid kicking soccer ball problem 43
2.2.3 Model for solenoid kicker work and force ... 50
2.2.4 Final design requirements for linear-actuator solenoid and supporting electrical system 62

2.3 Appendix: Modeling of the temperature rise produced by ohmic heating from single or multiple solenoid-actuator kicks 63
2.3.1 Quick-Fire problem approach ... 63
2.3.2 Problem definition and sketch ... 69
2.3.3 The baseline mathematical model ... 69
2.3.4 Physical parameters and data ... 71
2.3.5 Numerical results .. 72
2.3.6 Interpretation of results ... 74

2.4 References ... 75
3.8.2 Time-varying pitch angle model ... 110
3.8.3 Effect of gravity on rocket velocity during first stage flight 111
3.8.4 Effect of gravity on rocket height during first stage flight 111
3.8.5 Comparing model velocity and altitude with Shuttle data 112
3.8.6 Gravity loss magnitudes for previously flown launch systems 113
3.8.7 Model velocity, with gravity loss, compared with flight data 114
3.8.8 Calculation of gravity-loss corrected velocity at first stage burnout . 115
3.9 The effect of drag on Shuttle velocity at end of first stage flight 116
3.9.1 Modeling the effects of drag in the equation of motion 116
3.9.2 Estimating first stage drag loss ... 117
3.9.3 Final drag and gravity-corrected velocity at first stage burnout; key elements of the overall “velocity budget” for the first stage 120
3.10 Calculation of second stage velocities and gravity losses 120
3.10.1 Pitch and gravity loss modeling for the second stage flight period . 121
3.10.2 Time-varying gravity loss solution, region 2a 122
3.10.3 Time-varying velocity solution, region 2b 124
3.10.4 Combined velocity solution for regions 1, 2a, and 2b and \(v(\text{MECO}) \) .. 125
3.11 Summary of predicted \(\Delta v \) budget for the Shuttle 126
3.12 Comparison of Back-of-the-Envelope modeled Shuttle velocity and altitude as a function of time to NASA’s numerical prediction for all stages ... 128
3.12.1 Comparison of model velocity with NASA’s numerical prediction ... 128
3.12.2 Comparison of model altitude with NASA’s numerical prediction ... 129
3.12.3 Modeled altitude sensitivity to pitch time scale 130
3.13 Estimating mission orbital velocity requirements for the Shuttle 132
3.13.1 Part 1: circular orbital velocity ... 132
3.13.2 Part 2: elliptical orbits and the Hohmann transfer \(\Delta v \)’s 135
3.13.3 Numerical values for transfer orbit \(\Delta v \)’s 138
3.13.4 Time of flight for a Hohmann transfer 139
3.13.5 Direct insertion to a final orbital altitude (without using a parking orbit) ... 139
3.14 A Back-of-the-Envelope model to determine Shuttle payload as a function of orbit altitude .. 140
3.14.1 Analytic model for payload as a function of orbital altitude 141
3.14.2 Approximate linearized solution for payload 145
3.14.3 Reduction in useful cargo mass due to increases in OMS propellant mass ... 146
3.14.4 OMS models for correcting cargo or payload mass 148
3.14.5 Model for rate of change of “useful cargo” with altitude 150
3.14.6 Approximate analytic model for useful cargo 152
3.14.7 Modeling missions to the International Space Station 154
3.15 Tabulated summary of Back-of-the-Envelope equations and numerical results .. 155
3.16 References .. 166

4 Columbia Shuttle accident analysis with Back-of-the-Envelope methods . 169
 4.1 The Columbia accident and Back-of-the-Envelope analysis 169
 4.1.1 BotE modeling goals for the Columbia accident 171
 4.1.2 Quick estimation vs accurate estimation 172
 4.2 Quick-Fire modeling of the impact velocity of a piece of foam striking the Orbiter wing ... 172
 4.2.1 Interpretation of Quick-Fire results 176
 4.2.2 The bridge to more accurate BotE results 176
 4.3 Modeling the impact velocity of a piece of foam debris relative to the Orbiter wing; estimations beyond the Quick-Fire time results 177
 4.3.1 Looking at the collision from an earth-fixed or moving Shuttle coordinate system ... 178
 4.3.2 The constant drag approximation 181
 4.3.3 Analytically solving for the impact velocity and mass, given the time to impact ... 182
 4.3.4 Summary of results for constant acceleration model compared to data .. 189
 4.3.5 The non-constant acceleration solution 189
 4.3.6 An estimate of impact velocity and particle mass, taking the time to impact as given (the “inverse” problem) 194
 4.3.7 Comparing Osheroff’s “inverse” calculations to our “direct” estimate results .. 195
 4.3.8 Concluding thoughts on the impact velocity estimate ... 197
 4.4 Modeling the impact pressure and load caused by impact of foam debris with an RCC wing panel 197
 4.4.1 The impact load .. 197
 4.4.2 Impact overview ... 198
 4.4.3 Impact load mathematical modeling 199
 4.4.4 Elastic model for the impact stress 200
 4.4.5 Elastic–plastic impact of a one-dimensional rod against a rigid-wall .. 203
5 Estimating the Orbiter reentry trajectory and the associated peak heating rates

5.1 Introduction ... 221
5.2 The deorbit and reentry sequence .. 222
5.3 Using Quick-Fire methods to crudely estimate peak heating rate and total heat loads from the initial Orbiter kinetic energy ... 223
 5.3.1 Quick-Fire problem definition and sketch ... 224
 5.3.2 The Quick-Fire baseline mathematical model, initial results, and interpretation 224
5.4 A look at heat flux prediction levels based on an analytical model for blunt-body heating 231
 5.4.1 Numerical estimates of Stanton number using the Sutton–Graves constant 236
5.5 Simple flight trajectory model .. 237
 5.5.1 A simple BotE model for the initial entry period; the entry solution .. 239
 5.5.2 The equilibrium glide model .. 249
5.6 Calculating heat transfer rates in the peak heating region ... 263
 5.6.1 Selecting the nose radius .. 265
 5.6.2 Comparing the model maximum rate of heat transfer, \(\dot{q}_{\text{w}, \text{max}} \), with data 266
 5.6.3 Model estimate for nose radiation equilibrium temperature, \(T_{\text{max}} \) 267
 5.6.4 Model calculations of \(\dot{q}_{\text{w}} \) as a function of time .. 268
 5.6.5 Model calculations for total heat load at the stagnation point ... 271
5.7 Appendix: BotE modeling of non-Orbiter entry problems ... 274
5.8 References ... 275
6 Estimating the dimensions and performance of the Hubble Space Telescope .. 277

6.1 The Hubble Space Telescope .. 277
 6.1.1 HST system requirements 277
 6.1.2 HST engineering systems 278
 6.1.3 Requirements for fitting the HST into the Orbiter 279

6.2 The HST Optical Telescope design 280
 6.2.1 The equivalent system focal length 281
 6.2.2 How do designers determine the required system focal ratio, \(F_{eq} \) .. 284
 6.2.3 Telescope plate scale 288
 6.2.4 Selection of HST’s primary mirror focal ratio, \(F_1 = |f_1|/D \) 289
 6.2.5 Calculating the magnification \(m \) and exact constructional length \(L \) .. 290
 6.2.6 Estimating the secondary mirror diameter 291
 6.2.7 Estimating the radius of curvature of the HST secondary mirror ... 292

6.3 Modeling the HST length ... 295
 6.3.1 The light-shield baffle extension 296
 6.3.2 Modeling the length of the light shield 297
 6.3.3 The length of the instrument section 298
 6.3.4 Calculating the total HST telescope length 298

6.4 Summary of calculated HST dimensions 299

6.5 Estimating HST mass .. 300
 6.5.1 Primary mirror design 300
 6.5.2 Estimating primary mirror mass 301
 6.5.3 The estimated total HST system mass and areal density 303
 6.5.4 Some final words on the HST mass estimation exercise 305
 6.5.5 Onward to an estimate of HST’s sensitivity 306

6.6 Back-of-the-Envelope modeling of the HST’s sensitivity or signal to noise ratio 306
 6.6.1 Defining signal to noise ratio 307
 6.6.2 Modeling the mean signal, \(S \) 307
 6.6.3 Modeling the noise .. 310
 6.6.4 Final equation for signal to noise ratio 316
 6.6.5 Final thoughts on BotE estimates for HST sensitivity 318

6.7 References .. 319

Index .. 321
Aerospace Engineering on the Back of an Envelope
Alber, I.E.
2012, XXII, 326 p., Hardcover
ISBN: 978-3-642-22536-9