Contents

Preface ..xivii
Acknowledgments .. xvii
List of figures ... xx
List of tables .. xxi

1 Introduction ... 1
 1.1 Why Back-of-the-Envelope engineering? 1
 1.1.1 Back-of-the-Envelope engineering; an important adap-
 tation and survival skill for students and practicing
 engineers .. 2
 1.1.2 Design of a high school science fair electro-mechanical
 robot ... 2
 1.1.3 Design of a new commercial rocket launch vehicle for a
 senior engineering student’s design project 3
 1.1.4 Preliminary design of a new telescope system by an
 engineer transferred to a new optical project 3
 1.1.5 Examining the principles and ideas behind Back-of-the-
 Envelope estimation 4
 1.2 What is a Back-of-the-Envelope engineering estimate? .. 4
 1.2.1 Tradeoff between complexity and accuracy 5
 1.2.2 Back-of-the-Envelope reasoning 6
 1.2.3 Fermi problems 7
 1.2.4 An engineering Fermi problem 8
 1.3 General guidelines for building a good engineering model .. 12
 1.3.1 Step by step towards estimation 13
 1.3.2 Quick-Fire estimates 14
3 Estimating Shuttle launch, orbit, and payload magnitudes 77
 3.1 Introduction .. 77
 3.1.1 Early Space Shuttle goals and the design phase 78
 3.1.2 The Shuttle testing philosophy and the need for modeling 79
 3.1.3 Back-of-the-Envelope analysis of Shuttle launch, orbit, and payload magnitudes .. 80
 3.2 Shuttle launch, orbit, and reentry basics 80
 3.2.1 The liftoff to orbit sequence 80
 3.2.2 Reentry ... 82
 3.3 Inventory of the Shuttle’s mass and thrust as input to the calculation of burnout velocity .. 83
 3.3.1 Burnout velocity ... 83
 3.3.2 The velocity budget .. 84
 3.3.3 Mass inventory ... 84
 3.3.4 Thrust and specific impulse inventory 84
 3.4 Mass fraction rules of thumb .. 87
 3.5 Quick-Fire modeling of the takeoff mass components and takeoff thrust using SMAD rules of thumb 89
 3.5.1 Quick-Fire problem approach 89
 3.5.2 Problem definition and sketch 90
 3.5.3 Mathematical/“Rule of Thumb” empirical models 90
 3.5.4 Physical parameters and data 92
 3.5.5 Numerical calculation of total takeoff mass, cargo bay mass, and total takeoff thrust .. 95
 3.5.6 Interpretation of the Quick-Fire results 97
 3.5.7 From Quick-Fire estimates to Shuttle solutions using more accurate inputs ... 98
 3.6 Ideal velocity change Δv for each stage of an ideal rocket system 98
 3.6.1 Propellant mass versus time 99
 3.6.2 Time varying velocity change 100
 3.6.3 Effective burnout time and average flow rate 100
 3.6.4 Ideal altitude or height for each rocket stage 101
 3.7 Δv_{ideal} estimate for Shuttle first stage, without gravity loss 102
 3.7.1 Estimate of SSME propellant mass burned during first stage ... 103
 3.7.2 First stage mass ratio and average effective exhaust velocity ... 104
 3.7.3 Average specific impulse for the “parallel” (solid + liquid) first stage burn ... 104
 3.7.4 Δv_{ideal} estimate for Shuttle first stage 106
 3.7.5 Δv_{ideal} and altitude as functions of time, for the Shuttle first stage ... 106
 3.8 The effect of gravity on velocity during first stage flight 108
 3.8.1 Modeling the effects of gravity for a curved flight trajectory ... 108
3.14.2 Approximate linearized solution for payload 145
3.14.3 Reduction in useful cargo mass due to increases in OMS propellant mass 146
3.14.4 OMS models for correcting cargo or payload mass 148
3.14.5 Model for rate of change of “useful cargo” with altitude 150
3.14.6 Approximate analytic model for useful cargo 152
3.14.7 Modeling missions to the International Space Station .. 154
3.15 Tabulated summary of Back-of-the-Envelope equations and numerical results 155
3.16 References 166

4 Columbia Shuttle accident analysis with Back-of-the-Envelope methods . 169
 4.1 The Columbia accident and Back-of-the-Envelope analysis 169
 4.1.1 BotE modeling goals for the Columbia accident 171
 4.1.2 Quick estimation vs accurate estimation 172
 4.2 Quick-Fire modeling of the impact velocity of a piece of foam striking the Orbiter wing 172
 4.2.1 Interpretation of Quick-Fire results 176
 4.2.2 The bridge to more accurate BotE results 176
 4.3 Modeling the impact velocity of a piece of foam debris relative to the Orbiter wing; estimations beyond the Quick-Fire time results 177
 4.3.1 Looking at the collision from an earth-fixed or moving Shuttle coordinate system 178
 4.3.2 The constant drag approximation 181
 4.3.3 Analytically solving for the impact velocity and mass, given the time to impact 182
 4.3.4 Summary of results for constant acceleration model compared to data 189
 4.3.5 The non-constant acceleration solution 189
 4.3.6 An estimate of impact velocity and particle mass, taking the time to impact as given (the “inverse” problem) 194
 4.3.7 Comparing Osheroff’s “inverse” calculations to our “direct” estimate results 195
 4.3.8 Concluding thoughts on the impact velocity estimate 197
 4.4 Modeling the impact pressure and load caused by impact of foam debris with an RCC wing panel 197
 4.4.1 The impact load 197
 4.4.2 Impact overview 198
 4.4.3 Impact load mathematical modeling 199
 4.4.4 Elastic model for the impact stress 200
 4.4.5 Elastic–plastic impact of a one-dimensional rod against a rigid-wall 203
5 Estimating the Orbiter reentry trajectory and the associated peak heating rates
5.1 Introduction 221
5.2 The deorbit and reentry sequence 222
5.3 Using Quick-Fire methods to crudely estimate peak heating rate and total heat loads from the initial Orbiter kinetic energy 223
5.3.1 Quick-Fire problem definition and sketch 224
5.3.2 The Quick-Fire baseline mathematical model, initial results, and interpretation 224
5.4 A look at heat flux prediction levels based on an analytical model for blunt-body heating 231
5.4.1 Numerical estimates of Stanton number using the Sutton–Graves constant 236
5.5 Simple flight trajectory model 237
5.5.1 A simple BotE model for the initial entry period; the entry solution 239
5.5.2 The equilibrium glide model 249
5.6 Calculating heat transfer rates in the peak heating region 263
5.6.1 Selecting the nose radius 265
5.6.2 Comparing the model maximum rate of heat transfer, \(\hat{q}_{\text{wmax}} \), with data 266
5.6.3 Model estimate for nose radiation equilibrium temperature, \(T_{\text{max}} \) 267
5.6.4 Model calculations of \(\hat{q}_{\text{w}} \) as a function of time 268
5.6.5 Model calculations for total heat load at the stagnation point 271
5.7 Appendix: BotE modeling of non-Orbiter entry problems 274
5.8 References 275
6 Estimating the dimensions and performance of the Hubble Space Telescope ... 277
6.1 The Hubble Space Telescope .. 277
 6.1.1 HST system requirements .. 277
 6.1.2 HST engineering systems .. 278
 6.1.3 Requirements for fitting the HST into the Orbiter 279
6.2 The HST Optical Telescope design ... 280
 6.2.1 The equivalent system focal length 281
 6.2.2 How do designers determine the required system focal ratio, F_{eq}? ... 284
 6.2.3 Telescope plate scale ... 288
 6.2.4 Selection of HST's primary mirror focal ratio, $F_{1} = |f_1|/D$ 289
 6.2.5 Calculating the magnification m and exact constructional length L .. 290
 6.2.6 Estimating the secondary mirror diameter 291
 6.2.7 Estimating the radius of curvature of the HST secondary mirror .. 292
6.3 Modeling the HST length .. 295
 6.3.1 The light-shield baffle extension 296
 6.3.2 Modeling the length of the light shield 297
 6.3.3 The length of the instrument section 298
 6.3.4 Calculating the total HST telescope length 298
6.4 Summary of calculated HST dimensions 299
6.5 Estimating HST mass ... 300
 6.5.1 Primary mirror design .. 300
 6.5.2 Estimating primary mirror mass 301
 6.5.3 The estimated total HST system mass and areal density 303
 6.5.4 Some final words on the HST mass estimation exercise 305
 6.5.5 Onward to an estimate of HST's sensitivity 306
6.6 Back-of-the-Envelope modeling of the HST's sensitivity or signal to noise ratio 306
 6.6.1 Defining signal to noise ratio ... 307
 6.6.2 Modeling the mean signal, S ... 307
 6.6.3 Modeling the noise .. 310
 6.6.4 Final equation for signal to noise ratio 316
 6.6.5 Final thoughts on BotE estimates for HST sensitivity 318
6.7 References ... 319

Index .. 321
Aerospace Engineering on the Back of an Envelope
Alber, I.E.
2012, XXII, 326 p., Hardcover
ISBN: 978-3-642-22536-9