The goal in nanotechnology is to make high-performance nanodevices. For nanodevice fabrications, novel bottom-up approach, fabricating devices and systems by hierarchical assembly or controlled growth of nanoscale materials, has attracted tremendous interest. Because this bottom-up method allows single-crystalline nanostructure growth on a variety of substrates, the bottom-up method has been used to prepare high-quality nanomaterials even on amorphous glass, plastic, and graphene substrates. In the bottom-up approach, one-dimensional (1D) semiconductor nanostructures, including nanorods, nanowires, nanobelts, and nanotubes, are vital components for fabricating optoelectronic and photonic nanodevices. In particular, 1D semiconductor nanostructures such as nanowires, nanorods, and nanotubes open up significant opportunities for the fabrication of high-performance optoelectronic nanodevice. For the fabrication of high-efficiency optoelectronic devices including light-emitting diodes (LEDs) and solar cells, 1D heteroepitaxial nanostructures with well-defined crystalline interfaces must be essential building blocks since embedding quantum structures in individual nanostructures would enable novel physical properties such as quantum confinement to be exploited, such as the continuous tuning of spectral wavelength by varying the well thickness. Sophisticated optoelectronic nanodevices can be readily fabricated by composition and doping controls of semiconductor nanostructures. Furthermore, nanodevices based on vertically ordered 1D nanostructures permit extremely small size and ultrahigh density. Here, this book introduces the current status of semiconductor nanostructures for optoelectronic devices and outlines the processing and characterizations of semiconductor nanostructures and their optoelectronic device applications.

In Chaps. 1–6, current research activities related to the synthesis of 1D semiconductor nanostructures by various growth methods and their optoelectronic device applications are reviewed. Chapter 1 provides an overview of vapor–liquid–solid growth process, which has widely been employed for preparation of semiconductor nanowires. Using this technique, Si, Ge, GaAs, InP, GaP, ZnO, and GaN nanowires have been synthesized and several nanodevices including
p–n junction semiconductor nanowire LEDs and solar cells have been fabricated. In Chaps. 2 and 3, catalyst-free metal-organic vapor phase epitaxy to prepare high purity semiconductor nanostructures is introduced. Here, the processes to control positions, conductivities, and compositions of nanostructures for fabricating coaxial nanostructure LEDs are also described. Chapter 4 describes synthesis methods and characteristics of AlN nanostructures for UV optoelectronic device applications. Chapter 5 reviews the research progress on the controlled synthesis of a wide variety of nanowire heterostructures such as branched heterostructures, which includes solution phase and template-based methods. Meanwhile, the semiconductor nanostructures can be hybridized with graphene, which has recently been attracting much attention as a novel nanomaterial system for flexible optoelectronic devices as details are described in Chap. 6.

In Chaps. 7 and 8, structural and optical characterizations of semiconductor nanomaterials and nanostructures are reviewed. Chapter 7 introduces research on structural properties of ZnO and GaN nanostructures using X-ray absorption fine structure. As described in Chap. 8, optical properties of semiconductor nanostructures were investigated using luminescence characterization techniques, which are nondestructive, nonintrusive, and sensitive to the presence of defects or impurities in nanomaterials.

The last three chapters describe nanodevice applications of 1D semiconductor nanostructures. In Chap. 9, lasing characteristics of single and assembled nanowires are reviewed. Chapter 10 introduces near-field optical evaluation and the use of nanorod quantum structures for nanophotonic devices such as a nanophotonic gate. Finally, Chap. 11 presents the overview of nanowire solar cell studies, and integration strategies for practical device applications.

This book entitled “Semiconductor Nanostructures for Optoelectronic Devices – Processing, Characterization and Applications” is being introduced to review the recent works in the field of 1D nanomaterials and their optoelectronic device applications. Each chapter is written by leading scientists in the relevant field. Thus, I hope that high-quality scientific and technical information is provided to students, scientists, and engineers who are, and will be, engaged in fabrications of semiconductor nanostructures and their optoelectronic device applications.

I extend my acknowledgment to Dr. Claus Ascheron of Springer-Verlag for his guidance and suggestions.

Seoul
Republic of Korea

Gyu-Chul Yi