Contents

1 Preliminaries .. 1
 1.1 Complex Manifolds and Holomorphic Mappings 1
 1.2 Examples of Complex Manifolds 4
 1.3 Subvarieties and Complex Spaces 7
 1.4 Holomorphic Fiber Bundles 10
 1.5 Holomorphic Vector Bundles 13
 1.6 The Tangent Bundle 18
 1.7 The Cotangent Bundle and Differential Forms 22
 1.8 Plurisubharmonic Functions and the Levi Form 25
 1.9 Vector Fields, Flows and Foliations 30
 1.10 Jet Bundles, Holonomic Sections and the Homotopy Principle . 39

2 Stein Manifolds .. 43
 2.1 Domains of Holomorphy 43
 2.2 Stein Manifolds and Stein Spaces 47
 2.3 Characterization by Plurisubharmonic Functions 50
 2.4 Cartan-Serre Theorems A & B 52
 2.5 The $\overline{\partial}$-Problem 55

3 Stein Neighborhoods and Holomorphic Approximation 57
 3.1 Q-Complete Neighborhoods 57
 3.2 Stein Neighborhoods of Stein Subvarieties 62
 3.3 Holomorphic Retractions onto Stein Submanifolds 66
 3.4 A Semiglobal Holomorphic Extension Theorem 68
 3.5 Totally Real Submanifolds 71
3.6 Stein Neighborhoods of Certain Laminated Sets 75
3.7 Stein Compacts with Totally Real Handles 78
3.8 Thin Strongly Pseudoconvex Handlebodies 82
3.9 Morse Critical Points of q-Convex Functions 88
3.10 Crossing a Critical Level of a q-Convex Function 91
3.11 The Topological Structure of a Stein Space 96

4 Automorphisms of Complex Euclidean Spaces 99
4.1 Shears ... 100
4.2 Automorphisms of \mathbb{C}^2 102
4.3 Attracting Basins and Fatou-Bieberbach Domains 106
4.4 Random Iterations and the Push-Out Method 114
4.5 Mittag-Leffler Theorem for Entire Maps 116
4.6 Tame Discrete Sets in \mathbb{C}^n 118
4.7 Unavoidable and Rigid Discrete Sets 120
4.8 Algorithms for Vector Fields 123
4.9 The Andersén-Lempert Theorem 125
4.10 The Density Property 130
4.11 Automorphisms Fixing a Subvariety 138
4.12 Moving Polynomialsly Convex Sets 143
4.13 Moving Totally Real Submanifolds 146
4.14 Controlling Unbounded Curves 149
4.15 Automorphisms with Given Jets 153
4.16 A Mittag-Leffler Theorem for Automorphisms of \mathbb{C}^n 158
4.17 Interpolation by Fatou-Bieberbach Maps 164
4.18 Twisted Holomorphic Embeddings $\mathbb{C}^k \hookrightarrow \mathbb{C}^n$ 168
4.19 Nonlinearizable Periodic Automorphisms of \mathbb{C}^n 172
4.20 Non-Runge Fatou-Bieberbach Domains and Long \mathbb{C}^n’s 177
4.21 Serre’s Problem on Stein Bundles 180

5 Oka Manifolds ... 185
5.1 A Historical Introduction to the Oka Principle 185
5.2 Cousin Problems and Oka’s Theorem 187
5.3 The Oka-Grauert Principle 190
5.4 What is an Oka Manifold? 192
5.5 Examples of Oka Manifolds 198
5.6 An Application of Michael’s Selection Theorem 207
6 Elliptic Complex Geometry and Oka Principle ... 241
6.1 Holomorphic Fiber-Sprays and Elliptic Submersions 242
6.2 Gromov’s Oka Principle .. 243
6.3 Composed and Iterated Sprays .. 245
6.4 Examples of Subelliptic Manifolds and Submersions 249
6.5 Lifting Homotopies to Spray Bundles 259
6.6 Runge’s Theorem for Sections of Subelliptic Submersions 263
6.7 Gluing Holomorphic Sections on C-Pairs 267
6.8 Complexes of Holomorphic Sections 269
6.9 C-Strings ... 272
6.10 Construction of the Initial Holomorphic Complex 275
6.11 The Main Modification Lemma ... 277
6.12 Proof of Gromov’s Oka Principle 283
6.13 Relative Oka Principle on 1-Convex Spaces 286
6.14 Oka Maps ... 287

7 Applications ... 291
7.1 Principal Fiber Bundles ... 291
7.2 The Oka-Grauert Principle for G-Bundles 294
7.3 Homomorphisms and Generators of Vector Bundles 299
7.4 Generators of Coherent Analytic Sheaves 303
7.5 The Number of Equations Defining a Subvariety 306
7.6 Elimination of Intersections ... 310
7.7 The Holomorphic Vaserstein Problem 312
7.8 Transversality Theorems for Holomorphic Maps 315
7.9 Singularities of Holomorphic Maps 323
7.10 Approximation by Algebraic Maps 325
7.11 Towards Quantitative Oka Theory 330
8 Embeddings, Immersions and Submersions 333
 8.1 Generic Almost Proper Mappings 334
 8.2 Embedding Stein Manifolds into Euclidean Spaces of Minimal
 Dimension ... 337
 8.3 Proof of the Relative Embedding Theorem 340
 8.4 Weakly Regular Embeddings and Interpolation 346
 8.5 The H-Principle for Holomorphic Immersions 350
 8.6 The Oka Principle for Proper Holomorphic Maps 352
 8.7 A Splitting Lemma for Biholomorphic Maps 358
 8.8 Conformal Diffeomorphisms of Bordered Riemann Surfaces . 365
 8.9 Embedding Bordered Riemann Surfaces in \(\mathbb{C}^2 \) 369
 8.10 Some Infinitely Connected Riemann Surfaces in \(\mathbb{C}^2 \) .. 375
 8.11 Approximation of Holomorphic Submersions 381
 8.12 Noncritical Holomorphic Functions on Stein Manifolds 386
 8.13 The H-Principle for Holomorphic Submersions 393
 8.14 Closed Holomorphic One-Forms Without Zeros 394
 8.15 Holomorphic Foliations on Stein Manifolds 396

9 Topological Methods in Stein Geometry 401
 9.1 The H-Principle for Totally Real Immersions 402
 9.2 Real Surfaces in Complex Surfaces 406
 9.3 Invariants of Smooth 4-Manifolds 411
 9.4 Lai Indexes and Index Formulas 413
 9.5 Cancelling Pairs of Complex Points 417
 9.6 Applications of the Cancellation Theorem 421
 9.7 The Adjunction Inequality in Kähler Surfaces 426
 9.8 The Adjunction Inequality in Stein Surfaces 434
 9.9 Well Attached Handles .. 438
 9.10 Stein Structures and the Soft Oka Principle 446
 9.11 The Case \(\dim_{\mathbb{R}} X \neq 4 \) 450
 9.12 Exotic Stein Structures on Smooth 4-Manifolds 453

References ... 461

Index ... 485
Stein Manifolds and Holomorphic Mappings
The Homotopy Principle in Complex Analysis
Forstnerič, F.
2011, XII, 492 p., Hardcover
ISBN: 978-3-642-22249-8