Contents

1 Linked Landscapes and Conformational Conversions:
 How Proteins Fold and Misfold .. 1
 Gareth J. Morgan and Sheena E. Radford
 1.1 Introduction ... 1
 1.2 The Unfolded Ensemble Under Native Conditions 4
 1.3 Folding and Misfolding Intermediates 6
 1.4 Protofibrils, Oligomers and Toxicity 8
 1.5 Amyloid Structure .. 9
 1.6 From the Test Tube to the Cell ... 11
 1.7 Conclusions ... 13
 References ... 13

2 A Quantitative Reconstruction of the Amide I Contour
 in the IR Spectra of Peptides and Proteins: From
 Structure to Spectrum ... 17
 Joseph W. Brauner and Richard Mendelsohn
 2.1 The Approach to Simulation of the Amide I Contour 17
 2.1.1 Introduction ... 17
 2.1.2 Historical Background .. 18
 2.1.3 Normal Coordinate Calculations 19
 2.1.4 Ab Initio Force Field Calculations 20
 2.1.5 The Modified GF Matrix Method 21
 2.1.6 Constructing the G and F Matrices in the Coupled
 Oscillators of One Kind Method 22
 2.1.7 Simulating the Amide I Contour 31
 2.2 Applications ... 32
 2.2.1 Isotopic Labeling ... 33
 2.2.2 Modeling the Early Stages of Thermal Denaturation 39
 2.2.3 Amide I Structure-Frequency Correlations
 in Globular Proteins .. 41
 2.2.4 IRRAS Simulations ... 45
3 Millisecond-to-Minute Protein Folding/Misfolding Events Monitored by FTIR Spectroscopy

Heinz Fabian and Dieter Naumann

3.1 General Considerations

- FTIR Spectroscopy, Experimental Aspects
 - Proteins in Aqueous Solutions
 - Measurements in D_2O
 - FTIR Spectra of Chemical Denaturants

3.2 FTIR Spectroscopy, Experimental Aspects

- Proteins in Aqueous Solutions
- Measurements in D_2O
- FTIR Spectra of Chemical Denaturants

3.3 Kinetic FTIR Experiments Applying Rapid Mixing and Temperature-Jump Approaches

- Rapid-Scan FTIR Spectroscopy: Advantages and Limitations
- Design and Operation of a Stopped-Flow Apparatus for Measurements in Heavy Water
- A Stopped-Flow Apparatus for Measurements of H_2O-Protein Solutions
- T-Jump Experiments in Heavy Water

3.4 Examples of Applying T-Jumps onto a Protein Solution

- Refolding of Wild-Type Ribonuclease T1 and Some of Its Mutants
- Unfolding of the λ-Cro Repressor

3.5 Examples Making Use of Rapid-Mixing Methods

- Refolding of α-Lactalbumin Studied by Stopped-Flow Infrared Spectroscopy After a pH-Jump
- Misfolding of β_2-Microglobulin
- The α-to-β Conversion Process of the Prion Protein

4 Watching Dynamical Events in Protein Folding in the Time Domain from Submilliseconds to Seconds:

Continuous-Flow Rapid-Mixing Infrared Spectroscopy

Satoshi Takahashi and Tetsunari Kimura

4.1 Introduction

4.2 The Collapse and Search Mechanism of Protein Folding

- The Protein Folding Mechanism Depends on the Chain Length
- Kinetic Investigation of Protein Folding for Intermediate Proteins

4.3 Development of Continuous-Flow Time-Resolved Infrared Spectrometer

- Comparison of Different Methods for Triggering Protein Folding Events
Table of Contents

4.3.2 Development of a Continuous-Flow Cell with a T-Shaped Flow Channel .. 95

4.3.3 Construction of the Time-Resolved Spectrometer Based on Infrared Microscopy 98

4.4 Practical Issues for Kinetic Infrared Investigations of Protein Folding ... 101

4.4.1 Selection of the Initial Unfolded State 101

4.4.2 Suppression of the Aggregate Formation 101

4.4.3 Method of Spectral Analysis 102

4.5 Application to Protein Folding ... 103

4.5.1 Pioneering Investigations of Rapid-Mixing Infrared Spectroscopy .. 103

4.5.2 Apomyoglobin .. 104

4.5.3 Single-Chain Monellin ... 107

4.6 Summary and Perspective .. 110

References ... 113

5 High-Pressure Vibrational Spectroscopy Studies of the Folding, Misfolding and Amyloidogenesis of Proteins 117

Roland Winter, Matthias Pühse, and Jonas Markgraf

5.1 Introduction to High-Pressure Bioscience 117

5.2 Fundamental Concepts: Stability Diagram of Proteins 119

5.3 Experimental Methods .. 120

5.3.1 High-Pressure FTIR Spectroscopy 120

5.3.2 Diamond Anvil Cell Technology 122

5.3.3 Pressure Calibrants for Infrared Spectroscopy 123

5.4 Examples of Pressure Studies on Proteins and Polymers 124

5.4.1 Pressure-Induced Protein Un- and Refolding Reactions 124

5.4.2 Protein Folding Kinetics .. 127

5.4.3 Pressure-Assisted Cold Denaturation of Proteins 130

5.4.4 Pressure Effects on Oligomeric Proteins and Chaperones 132

5.4.5 Cosolvent Effects ... 133

5.4.6 Aggregation/Fibrillation Reactions of Proteins 135

5.4.7 Enzymatic Reactions ... 138

5.4.8 Synthetic Polymers as Protein Mimetics 139

5.5 Conclusions and Outlook ... 143

References ... 144

6 Dynamics of α-Helix and β-Sheet Formation Studied by Laser-Induced Temperature-Jump IR Spectroscopy 147

Karin Hauser

6.1 Peptide Folding Dynamics .. 147

6.1.1 Secondary-Structure Formation 147

6.1.2 The Amide I Band as Structural Probe 148

6.1.3 Equilibrium vs. Kinetic Data 149

6.1.4 Rate Constants .. 150
6.2 Laser-Induced T-Jump Technique .. 151
6.2.1 Generation of the Heating Pulse 152
6.2.2 Photo-Acoustic Effects, Cavitation and Thermal Lensing 156
6.2.3 Experimental Setup ... 157
6.3 T-Jump Relaxation Kinetics .. 158
6.3.1 Two-State and Multistate Folders 158
6.3.2 Helix Dynamics ... 161
6.3.3 Hairpin Formation .. 161
6.4 Site-Specific Dynamics with Isotopic Editing 162
6.4.1 Site-Specific Frequency Shifts 162
6.4.2 Insights into Folding Mechanisms on the Residue Level 163
6.4.3 Single and Multiple Isotope Labels 166
References ... 168

7 Light-Triggered Peptide Dynamics .. 171
Wolfgang Zinth and Josef Wachtveitl
7.1 Introduction ... 171
7.2 Light-Triggered Peptides ... 172
7.2.1 The Photochromic Switching Unit 172
7.2.2 The Linking Group ... 175
7.2.3 The Peptide Moiety ... 177
7.3 Characterization of Light-Triggered Peptides
by Stationary Spectroscopy ... 177
7.4 Methods for the Study of Ultrafast Structural Dynamics 180
7.5 Applications ... 183
7.5.1 Ultrafast Spectroscopy on Cyclic Azobenzene Peptides 183
7.5.2 Unfolding and Folding of a Light Switchable
Hairpin Model Compound ... 184
7.5.3 Toward Light Switchable Tertiary Structures:
(I) Azo-maquettes ... 185
7.5.4 Toward Light Switchable Tertiary Structures:
(II) Azo-collagens .. 187
7.6 Conclusion ... 190
References ... 191

8 Time-Resolved FTIR Spectroscopy of pH-Induced
Aggregation of Peptides .. 193
John E.T. Corrie, Alex Perálvarez-Marín, and Andreas Barth
8.1 Introduction to Infrared Difference Spectroscopy 193
8.1.1 Principles .. 193
8.1.2 Triggering Protein Reactions 194
8.1.3 Interpreting Difference Spectra 196
8.2 Caged Compounds .. 198
8.2.1 Introduction to Caged Compounds 198
8.2.2 Caged Protons ... 202
8.2.3 Difference Spectrum of Caged Sulfate Photolysis 204
8.3 Acidification-Induced Unfolding of Myoglobin 206
8.4 Acidification-Induced Aggregation of the Alzheimer’s Peptide 207
 8.4.1 Introduction to the Alzheimer’s Peptide 207
 8.4.2 Time-Resolved Infrared Difference Spectroscopy of the Aggregation of the Alzheimer’s Peptide 208
8.5 Outlook .. 212
References ... 213

9 Examining Amyloid Structure and Kinetics with 1D and 2D Infrared Spectroscopy and Isotope Labeling 217
Lauren E. Buchanan, Emily B. Dunkelberger, and Martin T. Zanni
 9.1 Introduction .. 217
 9.2 Vibrational Modes of Amyloids .. 220
 9.3 Isotope Labeling Schemes .. 225
 9.4 Vibrational Dynamics of Amyloids 228
 9.5 Experimental Methods .. 229
 9.6 Experimental Data .. 230
 9.7 Summary .. 236
References ... 236

Index .. 239
Protein Folding and Misfolding
Shining Light by Infrared Spectroscopy
Fabian, H.; Naumann, D. (Eds.)
2012, XVI, 244 p., Hardcover
ISBN: 978-3-642-22229-0