Contents

1 Classification, Mineralogy and Industrial Potential
 of SiO₂ Minerals and Rocks .. 1
 1.1 Introduction .. 2
 1.2 Classification and Properties of SiO₂ Minerals 2
 1.2.1 SiO₂ Modifications and Varieties 2
 1.2.2 Real Structure and Properties of Quartz 3
 1.3 Origin and Nomenclature of SiO₂ Rocks 12
 1.3.1 Magmatic and Metamorphic SiO₂ Rocks 12
 1.3.2 Sedimentary SiO₂ Rocks 13
 1.4 Formation and Industrial Use of SiO₂ Raw Materials 16
 1.4.1 Magmatic and Postmagmatic Quartz 17
 1.4.2 Metamorphic Quartz 19
 1.4.3 Sedimentary SiO₂ Rocks 19
 1.4.4 Synthetic SiO₂ Raw Materials 20
 1.5 Conclusions .. 21
 References ... 22

2 Assessment of High Purity Quartz Resources 29
 2.1 Introduction .. 29
 2.2 Present Quartz Supplying Countries 30
 2.3 Typical High Purity Quartz Applications 31
 2.4 Demand Situation ... 33
 2.4.1 Lighting Industries 33
 2.4.2 Semiconductor Industry 34
 2.4.3 Photovoltaic Industry 34
 2.4.4 Optical Fibers 35
 2.5 Resource Estimation .. 35
 2.6 Analytics .. 37
 2.6.1 Bulk Chemical Analysis 39
 2.6.2 Characterization of Mineral Inclusions 39
3 Quality Requirements of Quartz Sand in the Building Industry

3.1 Introduction

3.1.1 The Idea Behind

3.1.2 General Development

3.2 Special Developments of Individual Construction Products and Increasing Requirements for Siliceous Raw Materials

3.2.1 Autoclaved Aerated Concrete Industry

3.2.2 Calcium Silicate Unit Industry

3.2.3 Cement Industry

3.2.4 Clay Brick Industry/Roof Tile Industry

3.2.5 Concrete Industry

3.2.6 Mortar and Render Industry

3.3 Recent Developments in Mining and Processing

3.3.1 Processing of Quartz Sand

3.3.2 Tendencies in Grinding of Quartz

3.4 Quartz Sand Deposits for the Use in Construction Industry

3.5 Conclusions

References

4 Petrological and Chemical Characterisation of High-Purity Quartz Deposits with Examples from Norway

4.1 Introduction

4.2 Impurities in Quartz

4.2.1 Lattice-Bound Trace Elements

4.2.2 Submicron and Nano-scale Inclusions

4.2.3 Mineral, Melt and Fluid Inclusions

4.3 Quality Definition of High-Purity Quartz

4.4 Methods

4.4.1 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

4.4.2 Backscattered Electron and Cathodoluminescence Imaging

References
5 Evaluation of the Potential of the Pegmatitic Quartz Veins of the Sierra de Comechigones (Argentina) as a Source of High Purity Quartz by a Combination of LA-ICP-MS, ICP, Cathodoluminescence, Gas Chromatography, Fluid Inclusion Analysis, Raman and FTIR spectroscopy

5.1 Introduction ... 120
5.2 Geology ... 122
5.3 Methods .. 123
 5.3.1 Bulk Chemical Composition by ICP-MS 123
 5.3.2 Spot Chemical Analysis by LA-ICP-MS 123
 5.3.3 Cathodoluminescence .. 123
 5.3.4 Fluid Inclusion Investigations 124
5.4 Results .. 125
 5.4.1 Petrography .. 126
 5.4.2 Cathodoluminescence .. 126
 5.4.3 Bulk Chemical Composition by ICP-MS 127
 5.4.4 Chemical Composition by LA-ICP-MS Spot Analysis 128
 5.4.5 Fluid Inclusions ... 129
5.5 Discussion ... 134
5.6 Conclusion ... 134
References .. 135

6 Brazilian Quartz Deposits with Special Emphasis on Gemstone Quartz and its Color Treatment .. 139
6.1 Introduction ... 140
6.2 Geology of Brazilian Quartz Deposits 141
 6.2.1 Brazilian Pegmatite Provinces 141
 6.2.2 Hydrothermal Quartz 145
 6.2.3 Secondary Deposits ... 147
6.3 Color Enhancement of Quartz 149
 6.3.1 A Brief Historic ... 149
 6.3.2 Color-Enhancing of Gemological Crystalline Quartz in Brazil ... 150
 6.3.3 Quartz Color-Enhancing in Brazil 152
7 First-Principles Calculations of the E'_1 Center in Quartz:
Structural Models, 29Si Hyperfine Parameters and Association
with Al Impurity .. 161
7.1 Introduction .. 161
7.2 Computation Methodology 165
7.3 Results and Discussion 167
 7.3.1 Single-Oxygen-Vacancy Models 167
 7.3.2 Tri-Vacancy Models 168
References ... 172

8 Gamma-Irradiation Dependency of EPR
and TL-Spectra of Quartz 177
8.1 Introduction .. 178
8.2 Experimental 181
8.3 Results and Discussion 182
8.4 Conclusion ... 187
References ... 188

9 Analysis of Low Element Concentrations in Quartz
by Electron Microprobe 191
9.1 Introduction .. 192
9.2 Excited Volume: Spatial Resolution 193
9.3 Pitfalls in Quartz Analysis 196
 9.3.1 Influence of Bremsstrahlung 196
 9.3.2 Beam Induced Damage 197
 9.3.3 Secondary Fluorescence Near Phase Boundaries . 206
9.4 Detection Limits, Precision and Accuracy 210
9.5 Analysis Protocol for Trace Elements in Quartz by EMP . 214
References ... 215

10 In Situ Analysis of Trace Elements in Quartz Using Laser
Ablation Inductively Coupled Plasma Mass Spectrometry 219
10.1 Introduction 220
10.2 Instrumentation 221
 10.2.1 Inductively Coupled Mass Spectrometry 221
 10.2.2 Laser Ablation Systems 223
10.3 Experimental Set-Up at NGU 225
10.4 Standards and Standard Preparation 228
10.5 Measurement Procedure, Calibration and Data Evaluation . 229
10.6 Limits of Detection 231
10.7 Precision 231
11 Cathodoluminescence Microanalysis of the Defect Microstructures of Bulk and Nanoscale Ultrapure Silicon Dioxide Polymorphs for Device Applications 237
11.1 Introduction 238
11.2 Materials and Methods 239
11.3 Results 242
11.4 Discussion 246
11.5 Bulk Single Crystal α-SiO$_2$ (Quartz) 247
11.6 Bulk Amorphous a-SiO$_2$ 248
11.7 Dry Thermal Oxide (Amorphous SiO$_2$) on Si (001) 254
11.8 Buried Amorphous SiO$_2$ in Si (001) 256
11.9 Conclusions 260
References 262

12 Trace Element Characteristics, Luminescence Properties and Real Structure of Quartz 265
12.1 Introduction 266
12.2 Methods 269
12.2.1 CL-Microscopy and -Spectroscopy 269
12.2.2 Trace Element Analyses 269
12.3 Luminescence and Trace-Element Characterisation of Quartz 270
12.3.1 Cathodoluminescence Spectroscopy 270
12.3.2 Trace Element Composition 272
12.4 Correlation of CL-Properties to Point Defects and Trace-Element Composition 277
12.4.1 Ultra-Violet to Blue Luminescence Between 330 and 400 nm 277
12.4.2 Blue to Bluish-Green Luminescence: The 450 and 505 nm-Bands 279
12.4.3 Greenish-Yellow Luminescence at 580 nm 280
12.4.4 Brown to reddish Luminescence Between 630 and 650 nm 280
12.5 Conclusions 282
References 283

13 Mineralogy, Geochemistry and Cathodoluminescence of Authigenic Quartz from Different Sedimentary Rocks 287
13.1 Introduction 288
13.2 Materials and Methods 289
13.3 Results and Discussion 291