Contents

Part I Primer to Modeling with MATLAB®

1 **Introduction**
 1.1 Environmental Modeling Using MATLAB®
 1.2 Introduction to MATLAB®
 1.2.1 Getting Started with MATLAB®
 1.2.2 Matrices in MATLAB®
 1.2.3 Basic Matrix Operations
 1.3 A Simple Environmental Model
 1.4 MATLAB® Graphics – The Figure Editor
 1.5 MATLAB® Help System
 References

2 **Fundamentals of Modeling, Principles and MATLAB®**
 2.1 Model Types
 2.2 Modeling Steps
 2.3 Fundamental Laws
 2.3.1 Conservation of Mass
 2.3.2 Conservation of Momentum
 2.3.3 Conservation of Energy
 2.4 Continuity Equation for Mass
 2.5 MATLAB® M-files
 2.6 Ifs and Loops in MATLAB®
 2.7 Debugging of M-files
 Reference

3 **Transport**
 3.1 The Conservation Principle
 3.2 Fick’s Law and Generalizations
 3.2.1 Diffusion
 3.2.2 Dispersion
 References

References
9 Ordinary Differential Equations: Dynamical Systems
9.1 Streeter-Phelps Model for River Purification
9.2 Details of Michaelis–Menten or Monod Kinetics
9.3 1D Steady State Analytical Solution
9.4 Redox Sequences
References

10 Parameter Estimation
10.1 Introduction
10.2 Polynomial Curve Fitting
10.3 Exponential Curve Fitting
10.4 Parameter Estimation with Derivatives
10.5 Transport Parameter Fitting
10.6 General Procedure
References

Part II Advanced Modeling Using MATLAB®

11 Flow Modeling
11.1 The Navier-Stokes Equations for Free Fluids
11.2 The Euler Equations and the Bernoulli Theorem
11.3 Darcy’s Law for Flow in Porous Media
11.4 Flow in Unsaturated Porous Media
References

12 Groundwater Drawdown by Pumping
12.1 Confined Aquifer
12.2 Unconfined Aquifer
12.3 Half-confined Aquifer
12.4 Unsteady Drawdown and Well Function
12.5 Automatic Transmissivity Estimation
References

13 Aquifer Baseflow and 2D Meshing
13.1 1D Analysis
13.2 1D Implementation
13.3 2D Implementation
13.4 Meshs and Grids
Reference

14 Potential and Flow Visualization
14.1 Definition and First Examples
14.2 Potential and Real World Variables
14.3 Example: Groundwater Baseflow and Well
14.4 MATLAB® 2D Graphics
14.5 MATLAB® 3D Graphics
References
15 **Streamfunction and Complex Potential** ... 281
 15.1 **Streamfunction** .. 281
 15.2 **The Principle of Superposition** .. 285
 15.2.1 **The Doublette** ... 286
 15.2.2 **Mirror Wells** ... 287
 15.3 **Complex Analysis and Complex Potential** 291
 15.4 **Example: Vortices or Wells Systems** ... 295
 15.5 **Example: Thin Objects in Potential Flow** 299
 References ... 301

16 **2D and 3D Transport Solutions (Gaussian Puffs and Plumes)** 303
 16.1 **Introduction** .. 303
 16.2 **2D Instantaneous Line Source** ... 308
 16.3 **2D Constant Line Source** .. 309
 16.4 **3D Instantaneous Source** .. 309
 16.5 **3D Constant Source** .. 311
 References ... 315

17 **Image Processing and Geo-Referencing** 317
 17.1 **Introduction** .. 317
 17.2 **Reading and Display** ... 318
 17.3 **Geo-Referencing** ... 319
 17.4 **Digitizing** .. 322
 17.5 **MATLAB® Functions** ... 324
 References ... 325

18 **Compartment Graphs and Linear Systems** 327
 18.1 **Compartments and Graphs** ... 327
 18.2 **Linear Systems** ... 331
 18.3 **Eigenvalues and Phase Space** ... 341
 References ... 346

19 **Nonlinear Systems** ... 347
 19.1 **Logistic Growth** ... 347
 19.2 **Competing Species** .. 350
 19.3 **Predator–Prey Models** ... 356
 19.4 **Chaos (Lorenz Attractor)** .. 360
 References ... 362

20 **Graphical User Interfaces** ... 363
 20.1 **The MATLAB® Guide** ... 363
 20.2 **The Transport GUI** .. 371
 References ... 375

21 **Numerical Methods: Finite Differences** .. 377
 21.1 **Introductory Example** ... 378
 21.2 **Finite Differences** .. 381
 21.3 **A Finite Difference Example** ... 386
Environmental Modeling
Using MATLAB
Holzbecher, E.
2012, XIX, 410 p. 273 illus. in color. With online files/update., Hardcover
ISBN: 978-3-642-22041-8