Rationality and Asymptotics are the two main concepts associated with the Modelling in Fluid Dynamics, which have completely changed our look on the Understanding of Navier–Stokes–Fourier (NS-F) equations, governing the viscous, compressible and heat conducting Newtonian baroclinic and non-adiabatic fluid flows.¹

This Rational Asymptotic Modelling (RAM) Approach have raised, on the one hand, further new interesting questions and potentialities for Applied Mathematicians, in their quest of rigorous existence and uniqueness results for the Fluid Flow problems.

On the other hand, this RAM Approach have opening up of new vistas for the derivation, by Fluid Dynamicians, various consistent simplified models related with real stiff fluid flow problems, as an assistance to Numericians embarked on a computational simulations of complex problems of engineering interest with the help of high speed computers.

In this book we touch (see, in particular, the Chap. 6) the “crucial” problem of a practical (rather than formal, abstract) “Mathematics” for a consistent RAM Approach, via a “Postulate” and, some “key rules” inspired from asymptotics.

This “mathematics for the RAM” is applied in a consistent way to modelling of various stiff problems of the: aerodynamics (Chap. 7), Bénard thermal convection (Chap. 8) and atmospheric motions (Chap. 9).

The main lignes of the aims of this book are set out in the “Prologue”, and in the “Overview” a brief outline of the events related with my rather long “RAM Adventure”, during the years 1968–2009, is given.

The book is divided into nine Chapters, an Epilogue, a list of References, and a Subject Index.

In Chap. 2, the Newtonian (Classic) Fluid Dynamics is considered as a Mathematical-Physical Science and the reader can find in four Sections a concise

¹ These NS-F equations are, in fact, the equations usually named “Navier–Stokes Compressible equations” – and assumed often barotropic equations, by the Mathematicians!
material concerning the main theoretical concepts and principles, equations and associated initial and boundary conditions.

The Chap. 3 is devoted to a tentative description of a rational way for the obtention, from NS-F equations, various main model equations and also to a discussion concerning their nonuniform validity, near the initial time (where the initial data are given) and in the vicinity of a solid wall limiting the fluid flow (where the boundary conditions for the velocity vector and temperature are given).

The Chap. 4, is entirely concerned with the application of RAM Approach for a justification of Boussinesq model equations, assuming that the Mach number is a small parameter.

The Chap. 5 is an application of the RAM Approach to large Reynolds numbers unsteady fluid flow, which leads to a complicated Five Regions Structure of unsteady NS-F full equations.

The Chap. 6 is a central one and present a “sketch of a Mathematical Theory for the RAM Approach”. As a basis for this “practical” Mathematics, in the realization of our RAM Approach, the following “Postulate” is accepted as true, despite its simplicity:

If a leading order an approximate simplified model is derived from a NS-F fluid flow problem, then it is necessary that a RAM Approach be adopted to make sure that terms neglected in a such NS-F stiff problem really are much smaller than those retained in derived approximate simplified, no-stiff, leading-order consistent model problem.

The Chap. 7, is concerned with the two applications of the RAM Approach in “Aerodynamics”. First, the derivation of a through-flow model problem, for a fluid flow in an axial compressor, when the blades in a row are very closely spaced. Secondly, the low Mach number flow of a gas within a cavity which is changing its shape and volume with time.

In Chap. 8, The RAM Approach concerns the famous Bénard convection problem for a liquid layer heated from below. In particular, the following alternative is demonstrated:

Either the buoyancy is taken into account, and in this case the free-surface deformation effect is negligible and we rediscover the classical leading-order Rayleigh-Bénard shallow convection, unless viscous dissipation, rigid-free, problem, or the free-surface deformation effect is taken into account, and in this case at leading-order, for thin films, the buoyancy and viscous dissipation effects does not play a significant role in the so-called Bénard-Marangoni thermocapillary instability problem.

But, if you have intend to take into account, in the case of a deep liquid layer, the viscous dissipation effect – according to Zeytounian – in equation for the temperature, then it is necessary to replace, the Rayleigh-Bénard shallow convection equations, by a new set of equations called deep convection equations with a “depth” parameter.”

The last Chap. 9 is devoted to atmospheric motions. First, we derive for 2D steady lee-waves problem, in a baroclinic, non-viscous and adiabatic atmosphere, from the Euler atmospheric equations, a single, exact but rather, awkward equation. This equation, coupled with an exact relation for the density, prove to be very convenient for a RAM Approach of lee-waves starting problem, when we consider the low Mach number case. Secondly, the low-Kibel/Rossby number asymptotic
model is considered, and a global quasi-geostrophic (G\text{QG}) model is derived from NS-F hydrostatic dissipative atmospheric equations. Namely: the G\text{Q} single main equation model, initial condition (at time $t = 0$) via an unsteady adjustment (Adj) and matching, and boundary condition (at the flat ground) via the Ackerblom’s problem in a steady Ekman boundary layer (Ek) problem and matching.

In Epilogue some concluding remarks are sketched briefly.

A postgraduate Course may involve most of the contents of this book, assuming perhaps a working knowledge of a classical university fluid dynamics Course.

Short Courses for training Applied Mathematicians and Numericiens and young Scientists in Industry and Research Laboratories can also be based on most of the contents of this book.

In fact, the material in this book, it seems me, is primarily suitable (maybe indispensable!) for use by the Scientists and Research Engineers working in the fields of Fluid Dynamics and having as a main motivation the numerical simulation of very stiff complex real fluid flows.

Finally, I thank Dr. Christoph Baumann, Engineering Editor, and the members of the Springer Engineering Editorial Department, where the camera-ready manuscript was produced in LaTeX and my English type-script was reread by a native English speaker.

Paris

Radyadour Khatchig Zeytounian
Navier-Stokes-Fourier Equations
A Rational Asymptotic Modelling Point of View
Zeytounian, R.K.
2012, XVI, 276 p., Hardcover
ISBN: 978-3-642-20745-7