Contents

1 Introduction .. 1

2 Model Formulation .. 9
 2.1 The Verhulst Model for Population Growth 9
 2.2 The SIS Model for Spread of Infection Without Immunity .. 12
 2.3 A Contact Process on a Complete Graph 14
 2.4 Some Early Stochastic Logistic Models 14
 2.5 Parameter Spaces ... 15

3 Stochastic Process Background .. 17
 3.1 Formulation of a Birth–Death Process 18
 3.2 Two Auxiliary Processes ... 19
 3.3 The Quasi-stationary Distribution q 20
 3.4 The Time to Extinction ... 25
 3.5 Ordering Relations Between Probability Vectors 29
 3.6 Three Basic Properties of the Map Ψ 31
 3.7 The Stationary Distribution p(0) is a Lower Bound of the Quasi-stationary Distribution q 34
 3.8 The Stationary Distribution p(1) is an Upper Bound of the Quasi-stationary Distribution q for the SIS Model 36
 3.9 Monotonicity of Two Expressions for the SIS Model 38

4 The SIS Model: First Approximations
 of the Quasi-stationary Distribution 41

5 Some Approximations Involving the Normal Distribution 47
 5.1 Approximations of the Normal Density Function φ
 and of Its Reciprocal φ* at the Argument ğ(k + x) 50
5.2 Approximations of the Normal Distribution Function Φ and of the Integral Φ^* of the Reciprocal of the Normal Density Function at the Argument $\hat{y}(k + x)$ 51
5.3 Approximations of the Ratios Φ/φ and Φ^*/φ^* 53
5.4 An Approximation of a Sum of Normal Densities .. 57
5.5 An Approximation of a Sum of Reciprocals of Normal Densities 66
5.6 On the Cox Continuity Correction .. 71

6 preparations for the Study of the Stationary Distribution $p^{(1)}$ of the SIS Model .. 73
6.1 A General Approximation of ρ_n ... 73
6.2 Three Specific Approximations of ρ_n ... 79
6.3 Approximations of $\sum_{n=1}^{N} \rho_n$... 81
 6.3.1 Approximation of $\sum_{n=1}^{N} \rho_n$ for $R_0 > 1$ 84
 6.3.2 Approximation of $\sum_{n=1}^{N} \rho_n$ for $R_0 < 1$ 87
 6.3.3 Approximation of $\sum_{n=1}^{N} \rho_n$ in the Transition Region 89

7 Approximation of the Stationary Distribution $p^{(1)}$ of the SIS Model .. 93
7.1 Approximation of the Stationary Distribution $p^{(1)}$ when R_0 is Distinctly Above One .. 93
7.2 Approximation of the Stationary Distribution $p^{(1)}$ when R_0 is Distinctly Below One .. 94
7.3 Reparametrization of R_0 in the Transition Region 96
7.4 Approximation of the Stationary Distribution $p^{(1)}$ in the Transition Region ... 98

8 Preparations for the Study of the Stationary Distribution $p^{(0)}$ of the SIS Model .. 101
8.1 Approximation of π_n .. 101
8.2 Approximations of $\sum_{n=1}^{N} \pi_n$... 103
 8.2.1 Approximation of $\sum_{n=1}^{N} \pi_n$ for $R_0 > 1$ 104
 8.2.2 Approximation of $\sum_{n=1}^{N} \pi_n$ for $R_0 < 1$ 106
 8.2.3 Approximation of $\sum_{n=1}^{N} \pi_n$ in the Transition Region 107

9 Approximation of the Stationary Distribution $p^{(0)}$ of the SIS Model .. 115
9.1 Approximation of the Stationary Distribution $p^{(0)}$ when R_0 is Distinctly Above One .. 115
9.2 Approximation of the Stationary Distribution $p^{(0)}$ when R_0 is Distinctly Below One .. 117
9.3 Approximation of the Stationary Distribution $p^{(0)}$ in the Transition Region ... 117
10 Approximation of Some Images Under Ψ for the SIS Model .. 119
 10.1 Approximations of $\Psi(p^{(1)})$ and $\Psi(p^{(0)})$ when R_0 is Distinctly Above One 120
 10.2 Approximation of $\Psi(p^{(1)})$ when R_0 is Distinctly Below One .. 127
 10.3 Approximation of $\Psi(p^{(1)})$ in the Transition Region .. 130
 10.4 Approximation of $\Psi(p^{(1)})$ in the Transition Region .. 135

11 Approximation of the Quasi-stationary Distribution q of the SIS Model .. 141
 11.1 Approximation of the Quasi-stationary Distribution q when R_0 is Distinctly Above One 141
 11.2 Approximation of the Quasi-stationary Distribution q when R_0 is Distinctly Below One 143
 11.3 Approximation of the Quasi-stationary Distribution q in the Transition Region 145

12 Approximation of the Time to Extinction for the SIS Model .. 149
 12.1 Approximation of the Time to Extinction when R_0 is Distinctly Above One 149
 12.2 Approximation of the Time to Extinction when R_0 is Distinctly Below One 152
 12.3 Approximation of the Time to Extinction in the Transition Region .. 153

13 Uniform Approximations for the SIS Model ... 155
 13.1 Asymptotic Approximations of H_1, H_0, H, and R ... 157
 13.2 Uniform Approximation of the Stationary Distribution $p^{(1)}$.. 161
 13.3 Uniform Approximation of the Stationary Distribution $p^{(0)}$.. 163
 13.4 Uniform Approximation of the Quasi-stationary Distribution q .. 166
 13.5 Uniform Approximation of the Time to Extinction .. 169

14 Thresholds for the SIS Model .. 171

15 Concluding Comments ... 177

A Notation .. 183

B A Maple Module for Numerical Evaluations .. 187

References .. 195

Index ... 199
Extinction and Quasi-Stationarity in the Stochastic Logistic SIS Model
Nåsell, I.
2011, XI, 199 p. 10 illus. in color., Softcover
ISBN: 978-3-642-20529-3