<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Basics</td>
</tr>
<tr>
<td>2.1</td>
<td>The physics of wound ballistics</td>
</tr>
<tr>
<td>2.2</td>
<td>Ammunition and weapons</td>
</tr>
<tr>
<td>2.3</td>
<td>Ballistics</td>
</tr>
<tr>
<td>3</td>
<td>General wound ballistics</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Processes in the wound channel; the temporary cavity</td>
</tr>
<tr>
<td>3.3</td>
<td>Simulants</td>
</tr>
<tr>
<td>3.4</td>
<td>Other approaches to simulation</td>
</tr>
<tr>
<td>4</td>
<td>Wound ballistics of bullets and fragments</td>
</tr>
<tr>
<td>4.1</td>
<td>The effectiveness of bullets</td>
</tr>
<tr>
<td>4.2</td>
<td>Wound ballistics of handgun bullets</td>
</tr>
<tr>
<td>4.3</td>
<td>Wound ballistics of rifle bullets</td>
</tr>
<tr>
<td>4.4</td>
<td>Wound ballistics of fragments</td>
</tr>
<tr>
<td>4.5</td>
<td>“Non-lethal” projectiles</td>
</tr>
<tr>
<td>5</td>
<td>Wound ballistics and forensic medicine</td>
</tr>
<tr>
<td>5.1</td>
<td>Conventional forensic medicine</td>
</tr>
<tr>
<td>5.2</td>
<td>Modern graphical methods</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental reconstruction</td>
</tr>
<tr>
<td>6</td>
<td>Wound ballistics and surgery</td>
</tr>
<tr>
<td>6.1</td>
<td>The historical connection between wound ballistics and surgery</td>
</tr>
<tr>
<td>6.2</td>
<td>Wound ballistics and ballistic trauma – what’s the difference?</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparing simulated wounds and real wounds</td>
</tr>
<tr>
<td>6.4</td>
<td>Clinical features of real wounds</td>
</tr>
</tbody>
</table>
6.5 The contribution of wound ballistics to the care of wounded people...313
6.6 Documenting ballistic trauma..317

7 Wound ballistics and international agreements..................................321
 Beat P. Kneubuehl
 7.1 Introduction ...321
 7.2 History of firearms and ammunition ..321
 7.3 International treaties ..334

Appendices

A Tables ...345
 A.1 List of tables in the main text ..345
 A.2 Characteristics of materials ..347
 A.3 Calibre designations (metric system) ..348
 A.4 Ballistic data for cartridges (metric system)350
 A.5 Calibre designations (British/U.S. system)355
 A.6 Ballistic data for cartridges (British/U.S. system)357
 A.7 Bullet designations ...362
 A.8 Geometric data for selected bullets ..363
 A.9 Twist length, angle of twist and rotation364
 A.10 Ballistics tables (metric system) ...366
 A.10 Ballistics tables (British/U.S. system)384
 A.12 Shotguns and shot ..402

B Glossary ...405
 B.1 English ⇒ German ⇒ French ..405
 B.2 German ⇒ English ⇒ French ..425
 B.3 French ⇒ German ⇒ English ..443

C Bibliography ...463
 Photo credits ...485

Index ...487
Detailed table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table of symbols</td>
<td>XIX</td>
</tr>
<tr>
<td></td>
<td>Prefix symbols for decimal multiples and submultiples of SI units</td>
<td>XXIII</td>
</tr>
<tr>
<td></td>
<td>Conversions</td>
<td>XXIII</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Basics</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>The physics of wound ballistics</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Preliminary remarks</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Coordinates, systems of units and notation</td>
<td>3</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Kinematics</td>
<td>4</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>Mass, momentum and force</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.3</td>
<td>Work and energy</td>
<td>8</td>
</tr>
<tr>
<td>2.1.3.4</td>
<td>Rotation</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3.5</td>
<td>Laws of conservation of mass, energy and momentum</td>
<td>11</td>
</tr>
<tr>
<td>2.1.3.6</td>
<td>Equations of motion</td>
<td>12</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Fluid dynamics</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4.1</td>
<td>General</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4.2</td>
<td>Basic concepts in thermodynamics</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4.3</td>
<td>Material characteristics</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4.4</td>
<td>Frictionless flow</td>
<td>21</td>
</tr>
<tr>
<td>2.1.4.5</td>
<td>Flow of a viscous fluid</td>
<td>23</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Fluid jets</td>
<td>26</td>
</tr>
<tr>
<td>2.1.5.1</td>
<td>General</td>
<td>26</td>
</tr>
<tr>
<td>2.1.5.2</td>
<td>Exhaust flow from a muzzle</td>
<td>26</td>
</tr>
<tr>
<td>2.1.5.3</td>
<td>De Laval nozzles (converging-diverging nozzles)</td>
<td>27</td>
</tr>
<tr>
<td>2.1.5.4</td>
<td>Jet velocity and energy</td>
<td>28</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Measuring techniques for wound ballistics</td>
<td>29</td>
</tr>
<tr>
<td>2.1.6.1</td>
<td>General</td>
<td>29</td>
</tr>
<tr>
<td>2.1.6.2</td>
<td>Dynamic phenomena</td>
<td>30</td>
</tr>
<tr>
<td>2.1.6.3</td>
<td>Physical values</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Ammunition and weapons</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Ammunition</td>
<td>34</td>
</tr>
</tbody>
</table>
2.2.2.1 The structure of a cartridge .. 34
2.2.2.2 Types of ammunition ... 41
2.2.2.3 Blank and irritant rounds ... 52
2.2.2.4 Fragmenting ammunition ... 53

2.2.3 Weapons ... 55
2.2.3.1 Firearm design and typology .. 55
2.2.3.2 Handguns ... 59
2.2.3.3 Long weapons .. 61
2.2.3.4 Alarm pistols and revolvers ... 65

2.3 Ballistics .. 65
2.3.1 Definitions .. 65
2.3.2 Interior ballistics ... 66
 2.3.2.1 General ... 66
 2.3.2.2 Powder combustion .. 66
 2.3.2.3 The firing sequence .. 67
 2.3.2.4 Interior ballistics calculations .. 68
 2.3.2.5 Energy balance ... 69
2.3.3 Muzzle phenomena .. 69
 2.3.3.1 Muzzle gas flow ... 69
 2.3.3.2 Flash ... 70
2.3.4 Exterior ballistics ... 71
 2.3.4.1 General; terms used .. 71
 2.3.4.2 Exterior ballistics calculations ... 72
 2.3.4.3 Ballistics tables ... 73
 2.3.4.4 Proper motion of a bullet ... 73
 2.3.4.5 Disturbances to the trajectory .. 74
2.3.5 Stability and tractability ... 75
 2.3.5.1 Definition of stability ... 75
 2.3.5.2 Spin-stabilized projectiles .. 76
 2.3.5.3 Projectiles stabilized by air forces 78
 2.3.5.4 Shoulder stabilization ... 78
 2.3.5.5 Tractability ... 79
 2.3.5.6 Stability and ricochets .. 80
2.3.6 Fragment ballistics ... 81
 2.3.6.1 Acceleration of fragments.. 81
 2.3.6.2 Exterior ballistics of fragments .. 82
2.3.7 Terminal ballistics models ... 83
 2.3.7.1 General ... 83
 2.3.7.2 The plugging model ... 83
 2.3.7.3 The displacement model (ductile failure) 84
 2.3.7.4 Bullet passing through a thin layer of material 84
3 General wound ballistics

3.1 Introduction

3.1.1 General

3.1.2 The history of wound ballistics

3.1.3 Basic relationships

3.2 Processes in the wound channel; the temporary cavity

3.2.1 Preliminary remarks

3.2.1.1 The concept of the “temporary cavity”

3.2.1.2 Different ways of looking at wounding

3.2.1.3 Modelling wound ballistics processes

3.2.2 Motion and behaviour of a bullet

3.2.2.1 Rifle bullets

3.2.2.2 Handgun bullets

3.2.2.3 Fragments and fragment-like projectiles

3.2.2.4 Possible types of wound channel

3.2.2.5 Physical models

3.2.3 The temporary cavity

3.2.3.1 Phenomenology of the temporary cavity

3.2.3.2 Quantitative description of the temporary cavity

3.2.3.3 Influence of impact conditions and bullet characteristics

3.2.3.4 The effect of the sectional density of a bullet on the shape of the temporary cavity

3.2.4 The effect of bullet design on behaviour

3.2.4.1 Categories of bullet

3.2.4.2 Deformation and fragmentation; general points

3.2.4.3 Experimental results

3.2.5 Patterns in bullet wounds to bones

3.2.6 Bullet temperature and sterility

3.2.6.1 Historical background

3.2.6.2 Bullet temperature

3.2.6.3 Bullets contaminated with bacteria

3.2.6.4 Burns due to bullets

3.3 Simulants

3.3.1 General

3.3.2 Gelatine

3.3.2.1 Characteristics and fabrication

3.3.2.2 Fabrication of gelatine blocks; preparation for experiments

3.3.2.3 Evaluating gelatine experiments

3.3.3 Glycerine soap (ballistic soap)
3.3.3.2 Ageing .. 144
3.3.3.3 Evaluating soap experiments 145
3.3.3.4 Using soap to conduct measurements 146
3.3.4 Comparison between soap and gelatine 147
 3.3.4.1 General .. 147
 3.3.4.2 Availability, handling and measuring techniques 147
 3.3.4.3 Reaction to bullets ... 148
 3.3.4.4 Which simulant for which purpose? 150
 3.3.4.5 Connection between the analysis methods 151
3.3.5 Bone ... 151
 3.3.5.1 General .. 151
 3.3.5.2 Hollow bones .. 152
 3.3.5.3 Modelling the head ... 153
3.3.6 Other simulants ... 153
3.4 Other approaches to simulation 154
 3.4.1 Experiments on animals and cadavers 154
 3.4.1.1 Animals ... 154
 3.4.1.2 Cadavers ... 156
 3.4.1.3 Cell cultures .. 157
 3.4.2 Physical/mathematical models 157
 3.4.2.1 General ... 157
 3.4.2.2 SELLIER’s velocity profiles 158
 3.4.2.3 Computer Man ... 159
 3.4.2.4 The “Verwundungsmodell Schütze” (VeMo-S) 160
4 Wound ballistics of bullets and fragments 163
 4.1 The effectiveness of bullets .. 163
 4.1.1 Effectiveness versus effect 163
 4.1.1.1 Definitions .. 163
 4.1.1.2 Factors that contribute to the effect of a bullet 163
 4.1.2 Measures of effectiveness 165
 4.1.2.1 Historical background 165
 4.1.2.2 The “stopping power” fallacy 166
 4.1.2.3 Traditional measures of effectiveness 167
 4.1.2.4 Summary and conclusions 176
 4.1.3 Determining the effectiveness of a bullet 178
 4.1.3.1 Definition of effectiveness 178
 4.1.3.2 Measuring effectiveness 179
 4.1.4 Military effectiveness criteria 179
 4.1.4.1 Definitions of effectiveness 179
 4.1.4.2 Probability of incapacitation 181
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Wound ballistics of handgun bullets</td>
<td>186</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Penetration depth of handgun bullets and ability to pass through gelatine, soap, muscle and bone</td>
<td>186</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>General</td>
<td>186</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Penetration depth in gelatine, soap and muscle</td>
<td>187</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Penetration capacity in bone</td>
<td>195</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Threshold velocities for eyes</td>
<td>200</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Characteristics of handgun bullets</td>
<td>201</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>General</td>
<td>201</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Bullets with good penetration properties</td>
<td>202</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Bullets designed for maximum effectiveness</td>
<td>202</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Unconventional bullet design</td>
<td>207</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Gas and fluid jets as projectiles</td>
<td>208</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>General</td>
<td>208</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Liquid jets</td>
<td>209</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Gas jets</td>
<td>209</td>
</tr>
<tr>
<td>4.2.3.4</td>
<td>The effects of gas jets in the case of gas and alarm pistols</td>
<td>210</td>
</tr>
<tr>
<td>4.3</td>
<td>Wound ballistics of rifle bullets</td>
<td>212</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Introduction</td>
<td>212</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Remote effects</td>
<td>213</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>General</td>
<td>213</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Shock waves</td>
<td>214</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Biological/pathological consequences of shock waves</td>
<td>218</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>Pressure changes in blood vessels</td>
<td>223</td>
</tr>
<tr>
<td>4.3.2.5</td>
<td>The effects of pressure pulses on blood vessels</td>
<td>224</td>
</tr>
<tr>
<td>4.3.2.6</td>
<td>Bone fractures at locations remote from the wound channel</td>
<td>225</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Wound ballistic characteristics of rifle bullets</td>
<td>226</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Bullets designed for military use</td>
<td>226</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Hunting bullets</td>
<td>228</td>
</tr>
<tr>
<td>4.3.3.3</td>
<td>Shot and slugs</td>
<td>229</td>
</tr>
<tr>
<td>4.4</td>
<td>Wound ballistics of fragments</td>
<td>232</td>
</tr>
<tr>
<td>4.4.1</td>
<td>General</td>
<td>232</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Frequency of fragment wounds</td>
<td>232</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Wounds caused by fragments and similar projectiles</td>
<td>232</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Equations of motion and energy for fragments</td>
<td>234</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Hypotheses</td>
<td>234</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>The geometrical form of the wound channel</td>
<td>234</td>
</tr>
<tr>
<td>4.4.2.3</td>
<td>Equation of energy and motion</td>
<td>235</td>
</tr>
<tr>
<td>4.4.2.4</td>
<td>Entry wound diameter and penetration depth</td>
<td>235</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Experimental verification of the models</td>
<td>236</td>
</tr>
</tbody>
</table>
4.4.3.1 Method ... 236
4.4.3.2 Entry wound diameter ... 236
4.4.3.3 Penetration depth .. 238
4.4.3.4 Comparison with other studies 239
4.4.3.5 Applications ... 240
4.5 “Non-lethal” projectiles ... 240
 4.5.1 General ... 240
 4.5.2 Projectile design ... 241
 4.5.2.1 Projectiles with low sectional density 241
 4.5.2.2 Expanding bullets ... 241
 4.5.2.3 Rubber shot ... 244
 4.5.2.4 Special projectiles for handguns 246
 4.5.3 Wound ballistics of “non-lethal” projectiles 246
 4.5.3.1 Penetrating projectiles 246
 4.5.3.2 Non-penetrating projectiles 248
 4.5.4 Dangerosity of projectiles 250
 4.5.4.1 Criteria of dangerosity 250
 4.5.4.2 Determining hazard areas 251
 4.5.4.3 Danger area for persons wearing protective equipment 251

5 Wound ballistics and forensic medicine 253
 5.1 Conventional forensic medicine 253
 5.1.1 General ... 253
 5.1.2 Crime-scene investigation 253
 5.1.2.1 Bullet damage at the crime scene 253
 5.1.2.2 Examination of the body at the scene 254
 5.1.2.3 Bloodstain pattern analysis 255
 5.1.3 Morphology of entry and exit wounds 257
 5.1.3.1 Entry wounds ... 257
 5.1.3.2 Exit wounds ... 260
 5.1.3.3 Grazing shots .. 261
 5.1.3.4 Indicators of muzzle-target distance 262
 5.1.4 The wound channel .. 265
 5.1.4.1 Wound morphology 265
 5.1.4.2 The relationship between the wound channel and the direction of shot 266
 5.1.5 Bullet wounds to the head 267
 5.1.5.1 Brain injuries .. 267
 5.1.5.2 Skull injuries .. 268
 5.1.6 Bullet wounds to the trunk 270
 5.1.6.1 The ribcage ... 270
 5.1.6.2 Abdomen ... 271
 5.1.7 Bullet wounds to bones 272
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.7.1</td>
<td>General</td>
<td>272</td>
</tr>
<tr>
<td>5.1.7.2</td>
<td>Flat bones</td>
<td>273</td>
</tr>
<tr>
<td>5.1.7.3</td>
<td>Long hollow bones</td>
<td>274</td>
</tr>
<tr>
<td>5.1.7.4</td>
<td>Vertebrae</td>
<td>275</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Peculiarities of shotgun wounds</td>
<td>275</td>
</tr>
<tr>
<td>5.1.8.1</td>
<td>General</td>
<td>275</td>
</tr>
<tr>
<td>5.1.8.2</td>
<td>Morphology of entry wounds</td>
<td>276</td>
</tr>
<tr>
<td>5.1.8.3</td>
<td>Internal morphology of shotgun wounds</td>
<td>276</td>
</tr>
<tr>
<td>5.1.9</td>
<td>Causes of death and incapacitation</td>
<td>277</td>
</tr>
<tr>
<td>5.1.9.1</td>
<td>Causes of death</td>
<td>277</td>
</tr>
<tr>
<td>5.1.9.2</td>
<td>Incapacitation</td>
<td>279</td>
</tr>
<tr>
<td>5.1.10</td>
<td>Particular projectiles</td>
<td>281</td>
</tr>
<tr>
<td>5.1.10.1</td>
<td>Gas-powered weapons</td>
<td>281</td>
</tr>
<tr>
<td>5.1.10.2</td>
<td>Alarm pistols and weapons firing irritants</td>
<td>282</td>
</tr>
<tr>
<td>5.1.10.3</td>
<td>Arrow wounds</td>
<td>283</td>
</tr>
<tr>
<td>5.1.10.4</td>
<td>Captive bolt pistols and bolt-firing tools</td>
<td>284</td>
</tr>
<tr>
<td>5.2</td>
<td>Modern graphical methods</td>
<td>286</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Surface documentation</td>
<td>286</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Radiological documentation</td>
<td>286</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Combining surface and radiological documentation</td>
<td>289</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Documenting crime scenes using modern graphics techniques</td>
<td>289</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental reconstruction</td>
<td>291</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Reconstructing shooting incidents</td>
<td>292</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Preliminary remarks</td>
<td>292</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>Points to bear in mind</td>
<td>292</td>
</tr>
<tr>
<td>5.3.2.3</td>
<td>Examples</td>
<td>293</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Blunt force</td>
<td>296</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Equipment used and experimental options</td>
<td>296</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Examples</td>
<td>297</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Using virtopsy in practice</td>
<td>298</td>
</tr>
<tr>
<td>5.3.4.1</td>
<td>Documentation and visualization</td>
<td>298</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>Example</td>
<td>301</td>
</tr>
</tbody>
</table>

6 Wound ballistics and surgery | 305 |
6.1 The historical connection between wound ballistics and surgery | 305 |
6.2 Wound ballistics and ballistic trauma – what’s the difference? | 306 |
6.3 Comparing simulated wounds and real wounds | 307 |
6.3.1	Preliminary remarks	307
6.3.2	Case studies	307
6.3.3	Conclusions	311
6.4 Clinical features of real wounds | 312 |
6.5 The contribution of wound ballistics to the care of wounded people | 313 |
6.5.1 The “wound profile” .. 313
6.5.2 What causes tissue damage? .. 313
6.5.3 Gas in tissues on a clinical x-ray .. 314
6.5.4 The “hot bullet” theory ... 314
6.5.5 Long bone fractures ... 315
6.5.6 Cranio-cerebral wounds ... 316
6.5.7 Unresolved issues ... 316
6.6 Documenting ballistic trauma ... 317
6.6.1 Overview .. 317
6.6.2 Scoring wounds in the field .. 318
6.6.3 The role of surgeons and the application of international humanitarian law .. 319
6.6.4 Documenting ballistic trauma – a wider responsibility for health professionals? .. 319

7 Wound ballistics and international agreements 321
7.1 Introduction ... 321
7.2 History of firearms and ammunition ... 321
7.2.1 General ... 321
7.2.2 The development of ammunition .. 322
7.2.2.1 The situation in 1800 .. 322
7.2.2.2 The elongated bullet .. 322
7.2.2.3 The primer .. 323
7.2.2.4 The metal cartridge ... 323
7.2.2.5 Smokeless powder ... 324
7.2.2.6 Bullets .. 325
7.2.2.7 “Dum-dum” bullets .. 326
7.2.3 The development of firearms in the 19th century 329
7.2.3.1 Muzzle loaders and their problems ... 329
7.2.3.2 Breech-loaders ... 330
7.2.3.3 Repeaters .. 330
7.2.4 The 20th century .. 331
7.2.4.1 Ammunition ... 331
7.2.4.2 Weapons ... 333
7.3 International treaties ... 334
7.3.1 Basic principles .. 334
7.3.2 The instruments .. 334
7.3.2.1 The original Geneva Convention (1864) 334
7.3.2.2 The St Petersbourg Declaration (1868) 335
7.3.2.3 The Brussels Conference (1874) ... 335
7.3.2.4 The Hague Convention (1899) .. 336
7.3.2.5 The Regulations concerning the Laws and Customs of War on Land (The Hague, 1907) .. 337
7.3.2.6 The Geneva Conventions of 1949 .. 337
7.3.2.7 The 1977 protocols additional to the Geneva Conventions ... 338
7.3.2.8 The United Nations Conference (Geneva, 1980) 339
7.3.2.9 The relevance of international instruments to wound ballistics ... 339

7.3.3 A basis for formulating future instruments of international humanitarian law .. 340
7.3.3.1 The disadvantages of the wording of existing conventions ... 340
7.3.3.2 Projectile-independent assessment processes 341
7.3.3.3 Formulation of standards ... 342

Appendices

A Tables ... 345
A.1 List of tables in the main text ... 345
A.2 Characteristics of materials ... 347
 A.2.1 Fluids and materials that behave like fluids 347
 A.2.2 Solid materials ... 347
A.3 Calibre designations (metric system) ... 348
 A.3.1 Handguns .. 348
 A.3.2 Military rifles ... 349
 A.3.3 Hunting and sporting rifles ... 349
A.4 Ballistic data for cartridges (metric system) 350
 A.4.1 Handgun cartridges .. 350
 A.4.2 Military ammunition ... 351
 A.4.3 Hunting and sporting ammunition ... 352
 A.4.4 Pre-1900 weapons and ammunition 353
 A.4.5 Ballistic performance of certain bows and crossbows 354
 A.4.5.1 Technical data .. 354
 A.4.5.2 Ballistic data ... 354
 A.4.6 Ballistic data for various types of projectiles used in sport 354
A.5 Calibre designations (British/U.S. system) ... 355
 A.5.1 Handguns .. 355
 A.5.2 Military rifles ... 356
 A.5.3 Hunting and sporting rifles ... 356
A.6 Ballistic data for cartridges (British/U.S. system) 357
 A.6.1 Handgun cartridges ... 357
A.6.2 Military ammunition ... 358
A.6.3 Hunting and sporting ammunition .. 359
A.6.4 Pre-1900 weapons and ammunition 360
A.6.5 Ballistic performance of certain bows and crossbows 361
 A.4.6.1 Technical data .. 361
 A.4.6.2 Ballistic data .. 361
A.6.6 Ballistic data for various types of projectiles used in sport 361
A.7 Bullet designations ... 362
 A.7.1 Bullet form .. 362
 A.7.2 Bullet material ... 362
 A.7.3 Bullet structure ... 362
A.8 Geometric data for selected bullets ... 363
 A.8.1 Military bullets ... 363
 A.8.2 Other bullets ... 363
A.9 Twist length, angle of twist and rotation 364
 A.9.1 Handguns ... 364
 A.9.2 Rifles ... 364
 A.9.2.1 Military rifles .. 364
 A.9.2.2 Hunting and sporting rifles 365
A.10 Ballistics tables (metric system) .. 366
 A.10.1 Notes ... 366
 A.10.2 Handguns ... 366
 A.10.3 Rifles ... 372
 A.10.4 Old rifles .. 379
 A.10.5 Various ... 381
A.11 Ballistics tables (British/U.S. system) 384
 A.11.1 Notes ... 384
 A.11.2 Handguns ... 384
 A.11.3 Rifles ... 390
 A.11.4 Old rifles .. 397
 A.11.5 Various ... 399
A.12 Shotguns and shot ... 402
 A.12.1 Calibres of shotgun barrels .. 402
 A.12.2 Ballistic data for shot pellets .. 402
 A.12.3 Designations for buckshot pellets 402
 A.12.4 Designations for normal shotgun pellets: British/U.S. system . . . 403
 A.12.5 Designations for normal shotgun pellets: metric system 403
B Glossary ... 405
 B.1 English ⇒ German ⇒ French ... 405
 B.2 German ⇒ English ⇒ French ... 425
 B.3 French ⇒ German ⇒ English ... 443
Table of symbols

This book uses SI units and units derived from them (some tables are also printed in British/U.S. units). Dimensionless quantities are indicated by [-]. Where no dimension is possible for a quantity, the corresponding space is left blank.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
<td>m²</td>
</tr>
<tr>
<td>C</td>
<td>General proportionality factor (e.g. specific heat capacity)</td>
<td>[-]</td>
</tr>
<tr>
<td>C/L</td>
<td>Measure of effectiveness (CARANTA and LEGRAIN)</td>
<td>[-]</td>
</tr>
<tr>
<td>CD</td>
<td>Drag coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>Cdr</td>
<td>Pressure coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>CF</td>
<td>Coefficient of friction</td>
<td>[-]</td>
</tr>
<tr>
<td>CL</td>
<td>Lift force coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>CM</td>
<td>Overturning moment coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>CP</td>
<td>Pressure coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>D</td>
<td>Plate thickness (terminal ballistics)</td>
<td>m</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
<td>J</td>
</tr>
<tr>
<td>E'</td>
<td>Energy density</td>
<td>J/mm²</td>
</tr>
<tr>
<td>E'ab</td>
<td>Wounding potential (energy deposited per cm travelled)</td>
<td>J/cm</td>
</tr>
<tr>
<td>Egr</td>
<td>Threshold energy density</td>
<td>J/mm²</td>
</tr>
<tr>
<td>Ea</td>
<td>Impact energy</td>
<td>J</td>
</tr>
<tr>
<td>Eab</td>
<td>Energy transferred</td>
<td>J</td>
</tr>
<tr>
<td>Ead</td>
<td>Entry energy (the energy of the projectile as it enters a layer, having passed through another)</td>
<td>J</td>
</tr>
<tr>
<td>Edr</td>
<td>Pressure energy</td>
<td>J</td>
</tr>
<tr>
<td>Eds</td>
<td>Energy expended in passing through a layer</td>
<td>J</td>
</tr>
<tr>
<td>Ee</td>
<td>Exit energy</td>
<td>J</td>
</tr>
<tr>
<td>Egr</td>
<td>Threshold energy</td>
<td>J</td>
</tr>
<tr>
<td>EKE</td>
<td>Expected kinetic energy</td>
<td>J</td>
</tr>
<tr>
<td>Ekin</td>
<td>Kinetic energy</td>
<td>J</td>
</tr>
<tr>
<td>Emech</td>
<td>Mechanical energy (= Ekin + Epot +Erot)</td>
<td>J</td>
</tr>
<tr>
<td>Epot</td>
<td>Potential energy</td>
<td>J</td>
</tr>
<tr>
<td>Erot</td>
<td>Energy of rotation</td>
<td>J</td>
</tr>
<tr>
<td>Erst</td>
<td>Residual energy of the projectile after it has exited the target (e.g. the body)</td>
<td>J</td>
</tr>
</tbody>
</table>
Wound Ballistics
Basics and Applications
Kneubuehl, B. (Ed.)
2011, XXIII, 496 p., Hardcover
ISBN: 978-3-642-20355-8