Contents

Part I Essentials

1 Amps, Pre-amps, Pre-pre-amps ... 3
 1.1 Purpose of the Book ... 3
 1.2 Type 1 Phono-Amp .. 6
 1.3 Type 2 Phono-Amp .. 6
 1.4 Type 3 Phono-Amp .. 7

2 RIAA Transfer/Anti-RIAA Transfer 9
 2.1 Introduction .. 9
 2.2 Cutting Process with Anti-RIAA 9
 2.3 Decoding with RIAA Transfer 10
 2.4 RIAA Transfer: Ideal Situation 11
 2.5 RIAA Transfer: Real Situation 14
 2.6 Deviation Between Ideal and Real Situation: Calculated 14
 2.7 Deviation Between Ideal and Real Situation: Simulated 16

3 Vinyl Record Reference Levels ... 17
 3.1 Introduction ... 17
 3.2 Cutting Modulations .. 17
 3.2.1 Lateral Modulation .. 17
 3.2.2 Vertical Modulation ... 17
 3.2.3 45°/45° Modulation (Flank Modulation FM) 18
 3.3 Test Records and Measurement/Calculation Methods 19
 3.3.1 Cartridge Equivalent Circuit 19
 3.3.2 Nominal Cartridge Data 21
 3.4 Cartridge Output Voltages from Different Test Records 21
 3.4.1 TSR 1005: 5 cm/s Lateral 22
 3.4.2 TSR 1007: 3.54 cm/s 45° 23
 3.4.3 DIN: 8 cm/s 45° + 11.3 cm/s Lateral and Vertical 23
3.4.4 No-Name: 5 cm/s 45° .. 24
3.4.5 Other: 10 cm/s and 12 cm/s Lateral 25
3.5 Cartridge Output Voltages at Different Load Resistances ... 25
 3.5.1 Questions ... 25
 3.5.2 Answers .. 25

Part II Noise Basics

4 Noise in Components and Other General Noise Effects 31
 4.1 Introduction ... 31
 4.2 Amplifier Noise Model .. 32
 4.3 Noise Voltages and Currents 33
 4.4 1/f-Noise .. 33
 4.5 Resistor (Johnson) Noise 35
 4.6 Noise Voltage Sources Sequence-Connected 36
 4.7 Noise Voltage Sources Parallel-Connected 37
 4.8 Noise Current Sources Parallel-Connected 38
 4.9 Noise Current Sources Sequence-Connected 38
 4.10 Paralleling of Active Devices 40
 4.11 Sequence of Two Amplifying Stages.......................... 41
 4.12 Noise Factor and Noise Figure 43
 4.13 Optimum Source Resistance 46
 4.14 Signal-to-Noise Ratio .. 49
 4.15 Weighted and/or Equalized SN 49
 4.16 Excess Noise of Resistors 50

5 Noise in Bipolar Junction Transistors 55
 5.1 BJT Noise Model ... 55
 5.2 Base Spreading Resistance: Calculation Approach 55
 5.3 Noise Model for BJT Plus Source 59
 5.4 Noise Contribution of a Second Stage (Contribution Allowed) ... 61
 5.5 Selection of Low-Noise BJTs and Ranking via Noise Factor Calculation .. 62
 5.6 CE Gain Stage .. 67
 5.7 CE Gain Stage Noise Model 70
 5.8 CE Gain Stage Example Calculation Incl. Excess Noise 74
 5.9 Base Spreading Resistance $r_{bb'}$: Measurement Approach 74
 5.10 Optimal Source Resistance R_S^{opt} and Optimal Collector Current $I_{C,opt}$... 75

6 Noise in Field Effect Transistors 77
 6.1 Introduction ... 77
 6.2 Noise Voltage Relevant Data Sheet Plots 77
 6.3 JFET Noise Model .. 79
8 Noise in Operational Amplifiers .. 153
 8.1 Introduction .. 153
 8.2 Series Configuration ... 153
 8.3 Shunt Configuration .. 154
 8.4 Noise Relevant Features of the Series and Shunt Op-Amp
 Configuration .. 154
 8.5 Series Configured Noise Model 157
 8.6 Series Configuration Example Calculation for Noise Voltage,
 Noise Current, SN, NF 157
 8.7 Shunt Configured Noise Model 158
 8.8 Shunt Configuration Example Calculation for Noise Voltage,
 Noise Current, SN, NF 159
 8.9 1/f-Noise Effects ... 160
 8.10 Optimal Source Resistance 161
 8.11 Noise Gain of a Shunt Configured Op-Amp 163

9 Noise in Instrumentation Amps 165
 9.1 Introduction .. 165
 9.2 Basic Op-Amp and In-Amp Gain Setting Options 165
 9.3 In-Amp Noise Model with Two Different i/p Sources 165
 9.4 In-Amp Noise Model with Two Equal i/p Sources 168
 9.5 In-Amp Noise Model with Floating i/p Source 169
 9.6 In-Amp Noise Model with an Un-Balanced i/p Source 170
 9.7 Example Calculation for a Floating i/p Source 171
 9.8 Example Calculation for a Grounded i/p Source 172
 9.9 In-Amp IC Circuitry Topologies 174
 9.10 Draft Design of a Lowest-Noise In-Amp 177

10 Noise in Transformers ... 179
 10.1 Introduction .. 179
 10.2 Turns Ratio .. 179
 10.3 Frequency and Phase Response 180
 10.4 Transformer and MC Cartridge Classification 181
 10.5 Transformer Equations: Ideal Situation 181
 10.6 Transformer Equations: Real Situation 183
 10.7 SN Example Calculations 184
 10.8 The Noise Voltage Approach (Approach 1) 185
 10.9 The Noise Figure Approach (Approach 2) 186
12.16 MCD-WS: Op-Amp Shunt Configured Noise Calculations
(Eqs. (8.17) ff) ... 269
12.17 MCD-WS: Op-Amp Optimal Source Resistance,
Noise Factor and SN Graphs (Figs. 8.7 and 8.8) 271
12.18 MCD-WS: In-Amp Draft Design NF and SN Calculations
(Figs. 9.17–9.19) ... 274
12.19 MCD-WS: Trafo SN Approach 1 and 2 Calculations
(Fig. 10.9) ... 277

Part III Best Practice

13 Noise of MM Cartridges .. 283
13.1 Introduction .. 283
13.2 Comparison of Manufacturer’s and Measured Data 284
13.3 Cartridge Impedance and Phase Measurement 285
13.4 Third Octave Band Measurement 286
13.5 Cartridge Equivalent Model .. 287
13.6 Complete Measurement Arrangement 289
13.7 Mathematical Model with Mathcad 290
13.8 Noise Model of Measurement Amp Plus MM Cartridge 292
13.9 $r_{hb'}$ Calculation .. 295
13.10 Noise Voltage and Current of Measurement Amp 296
13.11 SN Calculations .. 297
13.12 RIAA Transfer Function and Respective SNs 298
13.13 A-Filter Transfer Function and Respective SNs 299
13.14 Measurement Amp Design .. 300
13.15 Results ... 302
13.16 Influence of the Cartridge Loading Capacitor 304
13.17 Influence of the Gain Setting Resistor and of Temperature ... 304
13.18 Summary ... 305

14 Noise of MM Cartridges: Mathcad Worksheets 307
14.1 MCD-WS: Noise in MM Cartridges: Chap. 13 Calculations 308
14.2 MCD-WS: Noise in MM Cartridges: $r_{hb'}$ Calculation 317

15 Noise of Solid-State MC Phono-Amps 319
15.1 Introduction .. 319
15.2 Benchmarks and Related MC Phono-Amp Problems 320
15.3 Mathematical Rules to Calculate Any Kind of SN
by Simple Means ... 321
15.4 S-Filter .. 324
15.5 Calculation Results of a Variety of MC Phono-Amp
Design Solutions .. 327
15.6 The Transformer Solution ... 327
15.7 Equivalent Circuit ... 327
15.8 Trafo Plus BUVO MM Phono-Amp 329
15.9 Wiring Between Turntable and Phono-Amp
15.10 The Solid-State Approach
15.11 Selection of the Phono-Amp Input BJTs
15.12 Calculation and Measurement Results of Various i/p Devices
15.13 Circuit of the BUVO Solid-State MC Phono-Amp
15.14 Test Circuit for the i/p Capacitance
15.15 Power Supply
15.16 Sound
15.17 Frequency Response Defining Components
15.18 Additional Measurement Results
15.19 Graphs of o/p Noise Voltage Densities

16 Noise of Solid-State MC Phono-Amps: Mathcad Worksheets
16.1 MCD-WS: Various SNs of Resistors
16.2 MCD-WS: SNs of Various Transfer Functions
16.3 MCD-WS: Change of Input Load of the Linn Linto
16.4 MCD-WS: SN Evaluation of the DOSE MC Pre-Pre-Amp
16.5 MCD-WS: SN Evaluation of the BUVO MM Phono-Amp+DOSE MC ppa
16.6 MCD-WS: SN Evaluation of the BUVO MC Trafo-Coupled Phono-Amp
16.7 MCD-WS: SN Evaluation of the BUVO MC Solid-State Phono-Amp
16.8 MCD-WS: SN Evaluation of a BFW16A MC Solid-State Phono-Amp

17 Noise of Triode Driven Phono-Amps
17.1 Introduction
17.2 Power Supply Unit
17.3 Requirements for Test Gain-Stages
17.4 Circuits of the Test Gain-Stages
17.5 Test Gain-Stage Calculation and Measurement Results
17.6 The Test Gain-Stages as Active Parts of Phono-Amps: Theory
17.6.1 The Zwicky Approach
17.6.2 Calculation Approach
17.6.3 Open Questions
17.7 The Test Gain-Stages as Active Parts of Phono-Amps: Practice
17.8 Calculation Approach of the Example Phono-Amps
17.8.1 General Remarks
17.8.2 Calculation by Blocks: The 2-Pham
17.8.3 Calculation by Blocks: The 3-Pham
17.9 Results .. 407
17.10 Determination of the Resistor Current Noise Index NI of the Used Resistors ... 409
17.11 How Much g_m Do We Really Need? 410
17.12 Summary ... 415

18 Noise of Triode Driven Phono-Amps: Mathcad Worksheets 419
18.1 MCD-WS: CCA_{bb} Based Evaluation of the Real Triode Constants of an E88CC/6922 Example Double-Triode 420
18.2 MCD-WS: RIAA Networks for the 2-Pham and 3-Pham Topologies ... 425
18.3 MCD-WS: Zwicky Matrix: SN Calculations of a Theoretical 2-Pham, Based on the μ-Follower Test Gain-Stages and Data Sheet Figures ... 428
18.4 MCD-WS: Zwicky Matrix: SN Calculations of a Theoretical 3-Pham, Based on the μ-Follower Test Gain-Stages and Data Sheet Figures ... 432
18.5 MCD-WS: Evaluation of the Current Noise Index NI of the Gain-Stage Resistors by Application of a CCSCF$_b$ Configured Gain-Stage 436
18.6 MCD-WS: SN Calculations of the Example 2-Pham, Based on Data-Sheet Values (2-Pham-ds) 438
18.7 MCD-WS: SN Calculations of the Example 2-Pham, Based on Circuit and Triode Values Determined by the WS 18.1 Approach (2-Pham-re) 453
18.8 MCD-WS: SN Calculations of the Example 3-Pham, Based on Data-Sheet Values (3-Pham-ds) 469
18.9 MCD-WS: SN Calculations of the Example 3-Pham, Based on Circuit and Triode Values Determined by the WS 18.1 Approach (3-pham-re) 485
18.10 MCD-WS: Calculation of the Required Maximum Mutual Conductance g_m ... 501

19 RIAA Networks .. 505
19.1 Introduction .. 505
19.2 Un-Balanced (ub) Solutions .. 506
19.3 The Fully Passive 1-Step-Solution Types A_{ub} and B_{ub} 507
 19.3.1 Type A_{ub}: Ideal Case 508
 19.3.2 Type B_{ub}: Ideal Case 508
 19.3.3 Type $A_{ub,real}$... 509
 19.3.4 Type $B_{ub,real}$... 511
 19.3.5 The Succ-Apps Approach 512
19.4 The Fully Passive 2-Step-Solution Type AB_{ub} 515
19.5 The Active-Passive 2-Step-Solution Types C_{ub} and D_{ub} 519
19.5.1 Type Cub .. 519
19.5.2 Type Dub ... 520
19.6 The Fully Active 1-Step Solution Types Eub, Fub-A, Fub-B 522
 19.6.1 Type Eub .. 523
 19.6.2 Type Fub-A ... 523
 19.6.3 Type Fub-B ... 524
19.7 Shunt Mode .. 524
 19.7.1 Type Eub .. 524
 19.7.2 Type Fub-A ... 525
 19.7.3 Type Fub-B ... 526
19.8 Series Mode and Fourth Time Constant T4 526
 19.8.1 Type Eub .. 526
 19.8.2 Type Eub Succ-Apps Method ... 527
 19.8.3 Type Eub Specific Formulae Method 528
 19.8.4 Difference Between v1.0 and v2.0 529
 19.8.5 Type Fub-A Succ-Apps Method .. 530
 19.8.6 Type Fub-B Succ-Apps Method .. 530
19.9 Balanced (b) Solutions .. 531
 19.9.1 The Fully Passive 2-Step Solution Type (Ab) 531
 19.9.2 The Active/Passive 2-Step Solution Types C and D with Balanced In/Un-Balanced Out ... 532
 19.9.3 The Active/Passive 2-Step Solution Types C and D with Balanced In/Balanced Out .. 533
20 RIAA Networks: Mathcad Worksheets .. 535
 20.1 MCD-WS: 1-Step Passive Type Aub Solution in an Ideal Environment ... 536
 20.2 MCD-WS: 1-Step Passive Type Bub Solution in an Ideal Environment ... 538
 20.3 MCD-WS: 1-Step Passive Type Aub Solution in a Real Environment ... 540
 20.4 MCD-WS: 1-Step Passive Type Bub Solution in a Real Environment ... 542
 20.5 MCD-WS: 2-Step Active-Passive Type Cub Solution 544
 20.6 MCD-WS: 2-Step Active-Passive Type Dub Solution 546
 20.7 MCD-WS: Fully Active Type Eub Succ-Apps Solution for MC Phono-Amps ... 548
 20.8 MCD-WS: Fully Active Type Eub Succ-Apps Solution for MM Phono-Amps ... 550
 20.9 MCD-WS: Fully Active Type Eub Formulae Solution for MC Phono-Amps ... 552
 20.10 MCD-WS: Derivation of Proportional Factors to Calculate Type Eub RIAA Networks .. 555
The Sound of Silence
Lowest-Noise RIAA Phono-Amps: Designer's Guide
Vogel, B.
2011, XXIII, 752 p., Hardcover
ISBN: 978-3-642-19773-4