

Contents

Part I: Curricular Perspective

<table>
<thead>
<tr>
<th>Preface to Part I</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinfa Cai and Eric Knuth</td>
<td></td>
</tr>
</tbody>
</table>

Functional Thinking as a Route Into Algebra in the Elementary Grades 5

Maria L. Blanton and James J. Kaput

<table>
<thead>
<tr>
<th>Introduction</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Challenge of Curriculum and Instruction</td>
<td>6</td>
</tr>
<tr>
<td>Functional Thinking as a Route to Algebraic Thinking</td>
<td>7</td>
</tr>
<tr>
<td>Functional Thinking in the Elementary Grades</td>
<td>8</td>
</tr>
<tr>
<td>Children’s Capacity for Functional Thinking</td>
<td>9</td>
</tr>
<tr>
<td>Integrating Functional Thinking into Curriculum and Instruction</td>
<td>16</td>
</tr>
<tr>
<td>Transforming Teachers’ Resource Base to Support Students’ Functional Thinking</td>
<td>17</td>
</tr>
<tr>
<td>Using Children’s Functional Thinking to Leverage Teacher Learning</td>
<td>19</td>
</tr>
<tr>
<td>Creating Classroom Culture and Practice to Support Functional Thinking</td>
<td>20</td>
</tr>
<tr>
<td>Conclusion</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
</tbody>
</table>

Developing Students’ Algebraic Thinking in Earlier Grades: Lessons from China and Singapore 25

Jinfa Cai, Swee Fong Ng, and John C. Moyer

<table>
<thead>
<tr>
<th>Introduction</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features of the Chinese and Singaporean Curricula</td>
<td>27</td>
</tr>
<tr>
<td>Algebra Emphases in the Chinese and Singaporean Curricula</td>
<td>27</td>
</tr>
<tr>
<td>The Chinese Curriculum</td>
<td>28</td>
</tr>
<tr>
<td>The Singaporean Curriculum</td>
<td>32</td>
</tr>
</tbody>
</table>
Methodology .. 111
Algebra in Japanese Curriculum 112
Mathematical Expressions in Japanese Curriculum 114
Mathematical Expressions in Japanese Textbooks 114
Discussion ... 121
References ... 123

Commentary on Part I 125
Jeremy Kilpatrick
Algebra First .. 126
A Curriculum Topic ... 127
Numerical Patterns .. 128
Word Problems .. 128
Multiple Perspectives 129
References ... 129

Part II: Cognitive Perspective

Preface to Part II .. 135
Eric Knuth and Jinfa Cai

Algebraic Thinking with and without Algebraic Representation:
A Pathway for Learning 137
Murray S. Britt and Kathryn C. Irwin
Introduction .. 138
Children’s Understanding of Generalities for Operations
Before Schooling ... 139
Algebraic Thinking and the New Zealand Numeracy Project 140
Students’ Algebraic Thinking in the Last Year of Intermediate
School (Age 11–12) .. 146
The Growth of Algebraic Thinking from Numbers to Symbols:
A Longitudinal Study 147
Discussion ... 152
A Pathway for Algebraic Thinking 153
References ... 157

Examining Students’ Algebraic Thinking in a Curricular Context:
A Longitudinal Study 161
Jinfa Cai, John C. Moyer, Ning Wang, and Bikai Nie
Standards-Based and Traditional Curricula in the United States 162
LieCal Project .. 163
Highlights of the Differences between CMP and Non-CMP
Curricula ... 164
Defining Variables .. 165
Defining Equations ... 165
Introducing Equation Solving 166
Using Mathematical Problems 168
Highlights of the Differences between CMP and Non-CMP
 Classroom Instruction ... 169
 Conceptual and Procedural Emphases 170
 Instructional Tasks .. 171

Students’ Development of Algebraic Thinking: Methodological
 Considerations .. 172
 The Focus of Algebraic Thinking 173
 Tasks and Data Analysis 174

Findings about the Development of Students’ Algebraic Thinking .. 174
 Representing Situations 175
 Solving Equations ... 177
 Making Generalizations 178

Conclusions and Instructional Implications 180

References ... 183

Years 2 to 6 Students’ Ability to Generalise: Models, Representations
 and Theory for Teaching and Learning 187
 Tom J. Cooper and Elizabeth Warren
 Perspectives on the Mathematics of Early Algebra 188
 Representation and Generalisation 190
 Models and Representations 191
 Generalisation .. 191
 Focus of EATP .. 193
 Focus of Chapter .. 194
 Design of EATP .. 194
 Findings and Discussion 196
 Patterns ... 197
 Change and Functions 198
 Equations and Equivalence 201
 Generalising Principles and Abstract Representations 204
 Conclusions and Implications 206
 Models and Representations 206
 Generalisation .. 207
 Theoretical Framework 209
 References ... 211

Algebra in the Middle School: Developing Functional Relationships
 Through Quantitative Reasoning 215
 Amy B. Ellis
 What Is Quantitative Reasoning? 216
 The Importance of (and Difficulties with) Functional Thinking . 218
 An Alternative Approach to Function: Quantities and Covariation . 222
 A Flexible Understanding of Functions 226
 Coordinating Covariation and Correspondence Approaches . 226
 Flexibility Across Forms 230
Representational Competence and Algebraic Modeling 239
Andrew Izsák
Early Results on Students’ Understandings of Standard Representations in Algebra .. 241
Theoretical Accounts of Reasoning with External Representations 241
Students’ Capacities to Reason with External Representations 243
First Result: Criteria for Evaluating External Representations 244
Second Result: Adaptive Interpretation .. 249
Conclusion .. 253
References ... 256

Middle School Students’ Understanding of Core Algebraic Concepts:
Equivalence & Variable ... 259
Eric J. Knuth, Martha W. Alibali, Nicole M. McNeil, Aaron Weinberg,
and Ana C. Stephens
Introduction ... 260
Student Understanding of Equivalence & Variable 261
Equivalence .. 261
Variable .. 262
Method ... 262
Participants .. 262
Data Collection ... 263
Coding ... 264
Results .. 266
Interpretation of the Equal Sign .. 266
Performance on the Equivalent Equations Problem 267
Interpretation of a Literal Symbol ... 270
Performance on the which Is Larger Problem 271
Discussion ... 273
Equivalence Results ... 273
Variable Results ... 274
Concluding Remarks .. 275
References ... 275

An Approach to Geometric and Numeric Patterning that Fosters
Second Grade Students’ Reasoning and Generalizing about Functions
and Co-variation ... 277
Joan Moss and Susan London McNab
Introduction ... 277
Our Project ... 279
Our Approach: Theoretical .. 279
Instructional Sequence ... 281
Visual Representation: Geometric Growing Patterns 281
Numeric Representations: Function Machine 282
Integration Activities: Pattern Sidewalk 283
Role of the Teacher 284
Procedures and Measures: Grade 2 Interventions 285
Results 285
Finding Rules for Patterns and Generating Patterns Based on Given Rules 286
Constructing a Pattern from a Rule: “A number times two, plus one’ pattern?” 286
Finding a Rule for a Given Pattern: “Position number times three, plus one” 287
Students’ Invention of Multiplication 288
Deconstructing Multiplication: “Double the position, plus the position” 289
Using a Structural Understanding of Multiplication to Predict Far Positions: “It’s 40 up, and 3 to the side” 289
The Discovery of Zero 291
Zero as a Coefficient: “Zero groups of 4 million is zero” 291
Zero as a Position Number: “the zero-th position” 292
Transfer of Structure 293
Circumventing Whole Object Reasoning 293
Informal Algebraic Expressions of Rules in the Sparky Problem 294
Discussion 295
The Curriculum with Its Focus on Integration 296
Prioritizing Visual Representations of Pattern 297
Pedagogy and Student Inventions 297
Concluding Thoughts 298
References 298

Grade 2 Students’ Non-Symbolic Algebraic Thinking 303
Luis Radford
Introduction 303
Extending Sequences 305
Abstraction 307
The Boundaries of Arithmetic and Algebraic Thinking 308
Layers of Generality 311
Beyond Intuited Indeterminacy 312
A General Overview 316
Synthesis and Concluding Remarks 317
References 320

Formation of Pattern Generalization Involving Linear Figural Patterns Among Middle School Students: Results of a Three-Year Study 323
F.D. Rivera and Joanne Rossi Becker
Anticipating What Is to Come: Initial Reflections on Our Three-Year Data from the Clinical Interviews 327
Cognitive Issues Surrounding Pattern Generalization: What We Know from Various Theoretical Perspectives and Empirical Studies

Clarifying the Definition of Pattern Generalization

Types of Algebraic Generalization Involving Figural Patterns

Methodology

Classroom Contexts from Years 1 to 3 of the Study

Nature and Content of Classroom Teaching Experiments in Years 1 and 2

Nature and Content of Classroom Teaching Experiments in Year 3

Nature and Content of Clinical Interview Tasks from Years 1 to 3

Data Collection and Analysis and Relevant Study Protocols

Findings and Discussion Part 1: Accounting for Constructive and Deconstructive Generalizations

Findings and Discussion Part 2: Understanding the Operations Needed in Developing a Pattern Generalization

Findings and Discussion Part 3: Factors Affecting Students’ Ability to Develop CGs

Findings and Discussion Part 4: A Three-Year Account of Classroom Mathematical Practices that Encouraged the Formation of Generalization Among Our Middle School Students

Year 1 Classroom Practices: From Figurally- to Numerically-Driven CSGs

Year 2 Practice: Continued Use of Numerically-Driven CSGs and a Refinement in the Case of Decreasing Linear Patterns

Year 3 Practices: A Third Shift Back to Figural-based Generalization and the Consequent Occurrence of CSGs, CNGs, and DGs

Findings and Discussion Part 5: Middle School Students’ Capability in Justifying CSGs

Findings and Discussion Part 6: Middle School Students’ Capability in Constructing and Justifying CNGs and DGs

Conclusion

References

Commentary on Part II

Bharath Sriraman and Kyeong-Hwa Lee

Introductory Remarks

Early Algebraization Versus Meaningful Arithmetic

Generalized Arithmetic, Generalizing, Generalization

From Haeckel to Lamarck to Early Algebraization

References
Part III: Instructional Perspective

Preface to Part III .. 377
Eric Knuth and Jinfa Cai

Prospective Middle-School Mathematics Teachers’ Knowledge of Equations and Inequalities .. 379
Nerida F. Ellerton and M.A. (Ken) Clements
The Context ... 379
Mathematical Considerations Relating to the Teaching and Learning of Equations and Inequalities ... 380
Student Misconceptions in Regard to Quadratic Equations . . 383
Student Misconceptions with Regard to Linear Inequalities . . 384
The Pre-Service Teachers Involved, and Tasks Used, in the Present Study ... 386
“Clever” Tasks ... 387
Developing the Pencil-and-Paper Instruments .. 389
The Eight Equation/Algebraic Inequality Pairs .. 389
Study Design, and Results .. 395
Population and Sample Considerations ... 395
Results .. 396
Conclusions in Relation to the Prospective Teachers’ Knowledge of Algebraic Inequalities ... 399
Prospective Teachers’ Knowledge in Relation to Quadratic Equations ... 401
Bad News, Good News and Some Concluding Comments .. 402
Bad News .. 402
Good News .. 403
Student Confidence Considerations ... 406
Concluding Comments .. 406
References .. 407

The Algebraic Nature of Fractions: Developing Relational Thinking in Elementary School .. 409
Susan B. Empson, Linda Levi, and Thomas P. Carpenter
What Is Relational Thinking? .. 411
Use of Relational Thinking in Learning Fractions ... 413
Understanding Fractional Quantities Through Relational Thinking ... 413
Use of Relational Thinking to Make Sense of Operations Involving Fractions .. 416
Discussion of Cases .. 422
A Conjecture Concerning Relational Thinking as a Tool in Learning New Number Content ... 423
Contents

Conclusion .. 425
References ... 426

Professional Development to Support Students’ Algebraic Reasoning:
An Example from the Problem-Solving Cycle Model 429
Karen Koellner, Jennifer Jacobs, Hilda Borko, Sarah Roberts, and Craig Schneider

Introduction .. 430
The Problem-Solving Cycle Model of Professional Development . 431
 The PSC as Implemented in the STAAR Project 432
Prior Research on the Development and Impact of the PSC . . 435
Impact of the PSC on Instructional Practice: A Case Study
 Analysis .. 436
Methods ... 436
 Ken Bryant .. 436
Data Sources ... 437
Data Analysis ... 438
Results and Discussion .. 440
 Patterns Drawn from QMI Coding and Analysis 440
 Vignette Analysis: Ken’s Skyscraper Windows Lesson 447
Conclusions .. 450
References ... 451

Using Habermas’ Theory of Rationality to Gain Insight into Students’ Understanding of Algebraic Language 453
Francesca Morselli and Paolo Boero

Introduction .. 453
Habermas’ Construct of Rational Behaviour 454
Adaptation of Habermas’ Construct of Rational Behavior
to the Case of the Use of Algebraic Language 455
 Epistemic Rationality ... 455
 Teleological Rationality ... 456
 Communicative Rationality 456
Relationships with Other Studies on Proving and Modeling
 and on the Teaching and Learning of Algebra 457
 Proving ... 457
 Modeling ... 459
 Teaching and Learning of Algebra 459
Description and Interpretation of Student Behavior 462
 Habermas’ Analytical Tool: Examples of Analysis of Student Behavior at Different School Levels 462
 Habermas Analytical Tool: Analysis of a Teaching Experiment ... 468
 The Context of the Study: Description of the Research Project ... 468
 First Task: Choose a Number 469
 Second Task: Representing the Game 470
Discussion .. 477
Theoretical Issues and Educational Strategies for Encouraging Teachers to Promote a Linguistic and Metacognitive Approach to Early Algebra

Annalisa Cusi, Nicolina A. Malara, and Giancarlo Navarra

Introduction .. 483
In Europe .. 484
From Traditional Algebra to Early Algebra 485
Early Algebra as a Meta-Subject and the ArAl Project .. 486
Socio-Constructive Teaching and Teacher Training 487
The Role of the Teacher’s Reflection 488
The Role of the ArAl Glossary in Teacher Training ... 490
Algebraic Babbling 492
Algebraic Babbling → Algebra as a Language 493
Algebraic Babbling → Syntax, Semantics → Brioshi 494
Brioshi → Canonical/Non Canonical form of a Number → ‘=”’ .. 495
The Multi-Commented Transcripts Methodology (MCTM) ... 496
From the Comments to a Classification of Attitudes 499
Example ... 502
Concluding Remarks 504
References ... 507

A Procedural Focus and a Relationship Focus to Algebra: How U.S. Teachers and Japanese Teachers Treat Systems of Equations 511
Margaret Smith

Background .. 512
Algebraic Reasoning 512
TIMSS Video Studies 514
Data ... 515
Analysis ... 515
Two Teachers’ Lessons 516
Discussion of Key Differences 516
Conclusions .. 526
References ... 526

Teaching Algebraic Equations with Variation in Chinese Classroom 529
Jing Li, Aihui Peng, and Naiqing Song

Introduction .. 529
The Source of the Data 531
Theoretical Framework 531
The Method of Research 533
Analysis of Data 533
The Introduction of the Concept of Equation 533
Early Algebraization
A Global Dialogue from Multiple Perspectives
Cai, J.; Knuth, E. (Eds.)
2011, XXIV, 624 p., Hardcover
ISBN: 978-3-642-17734-7