Contents

Part I: Curricular Perspective

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part I</td>
<td>3</td>
</tr>
<tr>
<td>Jinfa Cai and Eric Knuth</td>
<td></td>
</tr>
<tr>
<td>Functional Thinking as a Route Into Algebra in the Elementary Grades</td>
<td>5</td>
</tr>
<tr>
<td>Maria L. Blanton and James J. Kaput</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>The Challenge of Curriculum and Instruction</td>
<td>6</td>
</tr>
<tr>
<td>Functional Thinking as a Route to Algebraic Thinking</td>
<td>7</td>
</tr>
<tr>
<td>Functional Thinking in the Elementary Grades</td>
<td>8</td>
</tr>
<tr>
<td>Children’s Capacity for Functional Thinking</td>
<td>9</td>
</tr>
<tr>
<td>Integrating Functional Thinking into Curriculum and Instruction</td>
<td>16</td>
</tr>
<tr>
<td>Transforming Teachers’ Resource Base to Support Students’ Functional Thinking</td>
<td>17</td>
</tr>
<tr>
<td>Using Children’s Functional Thinking to Leverage Teacher Learning</td>
<td>19</td>
</tr>
<tr>
<td>Creating Classroom Culture and Practice to Support Functional Thinking</td>
<td>20</td>
</tr>
<tr>
<td>Conclusion</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
</tbody>
</table>

Developing Students’ Algebraic Thinking in Earlier Grades: Lessons from China and Singapore

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinfa Cai, Swee Fong Ng, and John C. Moyer</td>
<td>25</td>
</tr>
<tr>
<td>Introduction</td>
<td>26</td>
</tr>
<tr>
<td>Features of the Chinese and Singaporean Curricula</td>
<td>27</td>
</tr>
<tr>
<td>Algebra Emphases in the Chinese and Singaporean Curricula</td>
<td>27</td>
</tr>
<tr>
<td>The Chinese Curriculum</td>
<td>28</td>
</tr>
<tr>
<td>The Singaporean Curriculum</td>
<td>32</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Lessons from Chinese and Singaporean School Mathematics</td>
<td>34</td>
</tr>
<tr>
<td>Why Should Curricula Expect Students in Early Grades to Think Algebraically?</td>
<td>35</td>
</tr>
<tr>
<td>Are Young Children Capable of Thinking Algebraically?</td>
<td>36</td>
</tr>
<tr>
<td>How Can We Help Students to Think Arithmetically and Algebraically?</td>
<td>37</td>
</tr>
<tr>
<td>Are Authentic Applications Necessary for Students in Early Grades?</td>
<td>38</td>
</tr>
<tr>
<td>Conclusion</td>
<td>39</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
<tr>
<td>Developing Algebraic Thinking in the Context of Arithmetic</td>
<td>43</td>
</tr>
<tr>
<td>Understand the Behavior of the Operations</td>
<td>45</td>
</tr>
<tr>
<td>Generalizing and Justifying</td>
<td>51</td>
</tr>
<tr>
<td>1. Articulating General Claims</td>
<td>51</td>
</tr>
<tr>
<td>2. Developing a Mathematical Argument to Justify a General Claim</td>
<td>53</td>
</tr>
<tr>
<td>3. Representation-Based Proof: Tools for Proving in the Elementary Grades</td>
<td>56</td>
</tr>
<tr>
<td>Extending the Number System</td>
<td>59</td>
</tr>
<tr>
<td>Using Notation with Meaning</td>
<td>63</td>
</tr>
<tr>
<td>Connecting Arithmetic and Algebra</td>
<td>67</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>The Role of Theoretical Analysis in Developing Algebraic Thinking: A Vygotskian Perspective</td>
<td>71</td>
</tr>
<tr>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>Orienting Children to Theoretical Concepts</td>
<td>74</td>
</tr>
<tr>
<td>Role of Psychological Tools</td>
<td>76</td>
</tr>
<tr>
<td>The Part-Whole Relation</td>
<td>76</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>The Arithmetic-Algebra Connection: A Historical-Pedagogical Perspective</td>
<td>87</td>
</tr>
<tr>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>Arithmetic and Algebra in the Indian Mathematical Tradition</td>
<td>91</td>
</tr>
<tr>
<td>Building on Students’ Understanding of Arithmetic</td>
<td>95</td>
</tr>
<tr>
<td>The Arithmetic Algebra Connection—A Framework</td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
<tr>
<td>School Mathematics</td>
<td>110</td>
</tr>
<tr>
<td>Tad Watanabe</td>
<td></td>
</tr>
</tbody>
</table>
Commentary on Part I .. 125
Jeremy Kilpatrick
 Algebra First ... 126
 A Curriculum Topic 127
 Numerical Patterns 128
 Word Problems ... 128
 Multiple Perspectives 129
 References .. 129

Part II: Cognitive Perspective

Preface to Part II .. 135
 Eric Knuth and Jinfa Cai

Algebraic Thinking with and without Algebraic Representation:
 A Pathway for Learning 137
 Murray S. Britt and Kathryn C. Irwin
 Introduction ... 138
 Children’s Understanding of Generalities for Operations
 Before Schooling 139
 Algebraic Thinking and the New Zealand Numeracy Project ... 140
 Students’ Algebraic Thinking in the Last Year of Intermediate
 School (Age 11–12) 146
 The Growth of Algebraic Thinking from Numbers to Symbols:
 A Longitudinal Study 147
 Discussion .. 152
 A Pathway for Algebraic Thinking 153
 References ... 157

Examining Students’ Algebraic Thinking in a Curricular Context:
 A Longitudinal Study 161
 Jinfa Cai, John C. Moyer, Ning Wang, and Bikai Nie
 Standards-Based and Traditional Curricula in the United States .. 162
 LieCal Project .. 163
 Highlights of the Differences between CMP and Non-CMP
 Curricula .. 164
 Defining Variables 165
 Defining Equations 165
 Introducing Equation Solving 166
 Using Mathematical Problems 168
<table>
<thead>
<tr>
<th>Highlights of the Differences between CMP and Non-CMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom Instruction</td>
</tr>
<tr>
<td>Conceptual and Procedural Emphases</td>
</tr>
<tr>
<td>Instructional Tasks</td>
</tr>
</tbody>
</table>

Students’ Development of Algebraic Thinking: Methodological Considerations ..	172
The Focus of Algebraic Thinking	173
Tasks and Data Analysis	174

Findings about the Development of Students’ Algebraic Thinking ...	174
Representing Situations	175
Solving Equations ...	177
Making Generalizations	178

| Conclusions and Instructional Implications | 180 |
| References ... | 183 |

| Years 2 to 6 Students’ Ability to Generalise: Models, Representations and Theory for Teaching and Learning | 187 |
| Tom J. Cooper and Elizabeth Warren
| Perspectives on the Mathematics of Early Algebra | 188 |
| Representation and Generalisation
Models and Representations	190
Generalisation ...	191
Focus of EATP ..	193
Focus of Chapter ..	194
Design of EATP ..	194

Findings and Discussion	196
Patterns ...	197
Change and Functions ...	198
Equations and Equivalence	201
Generalising Principles and Abstract Representations	204

Conclusions and Implications	206
Models and Representations	206
Generalisation ...	207
Theoretical Framework	209

| References ... | 211 |

| Algebra in the Middle School: Developing Functional Relationships Through Quantitative Reasoning | 215 |
| Amy B. Ellis
| What Is Quantitative Reasoning?
| The Importance of (and Difficulties with) Functional Thinking
| An Alternative Approach to Function: Quantities and Covariation
| A Flexible Understanding of Functions
| Coordinating Covariation and Correspondence Approaches
| Flexibility Across Forms | 216 | 218 | 222 | 226 | 226 | 230 |
Fostering a Focus on Quantities 234
References .. 235

Representational Competence and Algebraic Modeling 239
Andrew Izsák
Early Results on Students’ Understandings of Standard Representations in Algebra 241
Theoretical Accounts of Reasoning with External Representations . 241
Students’ Capacities to Reason with External Representations . . 243
First Result: Criteria for Evaluating External Representations . . . 244
Second Result: Adaptive Interpretation 249
Conclusion .. 253
References .. 256

Middle School Students’ Understanding of Core Algebraic Concepts: Equivalence & Variable 259
Eric J. Knuth, Martha W. Alibali, Nicole M. McNeil, Aaron Weinberg, and Ana C. Stephens
Introduction 260
Student Understanding of Equivalence & Variable 261
 Equivalence 261
 Variable 262
Method .. 262
 Participants 262
 Data Collection 263
 Coding 264
Results .. 266
 Interpretation of the Equal Sign 266
 Performance on the Equivalent Equations Problem 267
 Interpretation of a Literal Symbol 270
 Performance on the which Is Larger Problem 271
Discussion 273
 Equivalence Results 273
 Variable Results 274
Concluding Remarks 275
References 275

An Approach to Geometric and Numeric Patterning that Fosters Second Grade Students’ Reasoning and Generalizing about Functions and Co-variation .. 277
Joan Moss and Susan London McNab
Introduction 277
Our Project 279
 Our Approach: Theoretical 279
Instructional Sequence 281
 Visual Representation: Geometric Growing Patterns . . 281
Cognitive Issues Surrounding Pattern Generalization: What We Know from Various Theoretical Perspectives and Empirical Studies .. 329
Clarifying the Definition of Pattern Generalization 329
Types of Algebraic Generalization Involving Figural Patterns 330
Methodology .. 331
Classroom Contexts from Years 1 to 3 of the Study 331
Nature and Content of Classroom Teaching Experiments
 in Years 1 and 2 .. 332
Nature and Content of Classroom Teaching Experiments
 in Year 3 .. 334
Nature and Content of Clinical Interview Tasks from Years 1
to 3 .. 335
Data Collection and Analysis and Relevant Study Protocols . 335
Findings and Discussion Part 1: Accounting for Constructive
 and Deconstructive Generalizations 338
Findings and Discussion Part 2: Understanding the Operations
 Needed in Developing a Pattern Generalization 342
Findings and Discussion Part 3: Factors Affecting Students’
 Ability to Develop CGs ... 344
Findings and Discussion Part 4: A Three-Year Account
 of Classroom Mathematical Practices that Encouraged
 the Formation of Generalization Among Our Middle School
 Students ... 347
 Year 1 Classroom Practices: From Figurally- to
 Numerically-Driven CSGs 348
 Year 2 Practice: Continued Use of Numerically-Driven CSGs
 and a Refinement in the Case of Decreasing Linear
 Patterns ... 351
 Year 3 Practices: A Third Shift Back to Figural-based
 Generalization and the Consequent Occurrence
 of CSGs, CNGs, and DGs 352
Findings and Discussion Part 5: Middle School Students’
 Capability in Justifying CSGs 354
Findings and Discussion Part 6: Middle School Students’
 Capability in Constructing and Justifying CNGs and DGs .. 357
Conclusion ... 362
References .. 363

Commentary on Part II ... 367
Bharath Sriraman and Kyeong-Hwa Lee
 Introductory Remarks ... 367
 Early Algebraization Versus Meaningful Arithmetic 368
 Generalized Arithmetic, Generalizing, Generalization 369
 From Haeckel to Lamarck to Early Algebraization 370
 References ... 372
Part III: Instructional Perspective

Preface to Part III ... 377
 Eric Knuth and Jinfa Cai

Prospective Middle-School Mathematics Teachers’ Knowledge of Equations and Inequalities ... 379
 Nerida F. Ellerton and M.A. (Ken) Clements
 The Context .. 379
 Mathematical Considerations Relating to the Teaching and Learning of Equations and Inequalities ... 380
 Student Misconceptions in Regard to Quadratic Equations 383
 Student Misconceptions with Regard to Linear Inequalities 384
 The Pre-Service Teachers Involved, and Tasks Used, in the Present Study ... 386
 “Clever” Tasks .. 387
 Developing the Pencil-and-Paper Instruments 389
 The Eight Equation/Algebraic Inequality Pairs 389
 Study Design, and Results 395
 Population and Sample Considerations 395
 Results .. 396
 Conclusions in Relation to the Prospective Teachers’ Knowledge of Algebraic Inequalities ... 399
 Prospective Teachers’ Knowledge in Relation to Quadratic Equations ... 401
 Bad News, Good News and Some Concluding Comments 402
 Bad News .. 402
 Good News .. 403
 Student Confidence Considerations 406
 Concluding Comments ... 406
 References ... 407

The Algebraic Nature of Fractions: Developing Relational Thinking in Elementary School ... 409
 Susan B. Empson, Linda Levi, and Thomas P. Carpenter
 What Is Relational Thinking? 411
 Use of Relational Thinking in Learning Fractions 413
 Understanding Fractional Quantities Through Relational Thinking ... 413
 Use of Relational Thinking to Make Sense of Operations Involving Fractions ... 416
 Discussion of Cases ... 422
 A Conjecture Concerning Relational Thinking as a Tool in Learning New Number Content ... 423
Professional Development to Support Students’ Algebraic Reasoning: An Example from the Problem-Solving Cycle Model
Karen Koellner, Jennifer Jacobs, Hilda Borko, Sarah Roberts, and Craig Schneider

Introduction ..430
The Problem-Solving Cycle Model of Professional Development . 431
The PSC as Implemented in the STAAR Project432
Impact of the PSC on Instructional Practice: A Case Study
Analysis ..436
Methods ..436
Ken Bryant ..436
Data Sources ..437
Data Analysis ..438
Results and Discussion440
Patterns Drawn from QMI Coding and Analysis440
Vignette Analysis: Ken’s Skyscraper Windows Lesson447
Conclusions ..450
References ...451

Using Habermas’ Theory of Rationality to Gain Insight into Students’ Understanding of Algebraic Language
Francesca Morselli and Paolo Boero

Introduction ..453
Habermas’ Construct of Rational Behaviour454
Adaptation of Habermas’ Construct of Rational Behavior
to the Case of the Use of Algebraic Language455
Epistemic Rationality ..455
Teleological Rationality456
Communicative Rationality456
Relationships with Other Studies on Proving and Modeling
and on the Teaching and Learning of Algebra457
Proving ..457
Modeling ..459
Teaching and Learning of Algebra459
Description and Interpretation of Student Behavior462
Habermas’ Analytical Tool: Examples of Analysis of Student
Behavior at Different School Levels462
Habermas Analytical Tool: Analysis of a Teaching Experiment ..468
The Context of the Study: Description of the Research Project 468
First Task: Choose a Number469
Second Task: Representing the Game470
Discussion ...477
Theoretical Issues and Educational Strategies for Encouraging Teachers to Promote a Linguistic and Metacognitive Approach to Early Algebra

Annalisa Cusi, Nicolina A. Malara, and Giancarlo Navarra

Introduction .. 483
In Europe .. 484
From Traditional Algebra to Early Algebra 485
Early Algebra as a Meta-Subject and the ArAl Project 486
Socio-Constructive Teaching and Teacher Training 487
The Role of the Teacher's Reflection 488
The Role of the ArAl Glossary in Teacher Training 490
Algebraic Babbling 492
Algebraic Babbling → Algebra as a Language 493
Algebraic Babbling → Syntax, Semantics → Brioshi ... 494
Brioshi → Canonical/Non Canonical form of a Number → ‘=’ .. 495
The Multi-Commented Transcripts Methodology (MCTM) 496
From the Comments to a Classification of Attitudes 499
Example ... 502
Concluding Remarks 504
References .. 507

A Procedural Focus and a Relationship Focus to Algebra: How U.S. Teachers and Japanese Teachers Treat Systems of Equations

Margaret Smith

Background .. 512
Algebraic Reasoning 512
TIMSS Video Studies 514
Data .. 515
Analysis .. 515
Two Teachers’ Lessons 516
Discussion of Key Differences 516
Conclusions ... 526
References .. 526

Teaching Algebraic Equations with Variation in Chinese Classroom

Jing Li, Aihui Peng, and Naiqing Song

Introduction ... 529
The Source of the Data 531
Theoretical Framework 531
The Method of Research 533
Analysis of Data 533
The Introduction of the Concept of Equation 533
Contents

The Improvement of Understanding of Equation 535
Equations Solving .. 539
The Application of Equations 541
Discussion and Conclusion 545
Process of Teaching Algebra with Variation 545
Operation of Teaching Algebra with Variation 546
Final Comments ... 548
References .. 555

Commentary on Part III 557
John Mason
Introduction ... 557
Systematics: Structure of Activity 558
What Is Algebra? .. 559
What Is and What Could Be: Teaching Algebra as an Activity .. 560
 Traditional Algebra Teaching 561
 Envisioned Algebra Teaching 563
What Makes ‘Algebra’ Early? 566
Comparisons ... 568
Transforming Algebra Teaching and Learning as an Activity .. 568
 How Can Locally Successful Teaching Be Engineered for All? 569
What Is and Could Be Researched? 570
What Is Really Researched? 571
Conclusions ... 574
References .. 574

Overall Commentary on Early Algebraization: Perspectives for Research and Teaching 579
Carolyn Kieran
 Shaping the Notion of Algebraic Thinking within Early Algebra .. 580
 Thinking about the General in the Particular 581
 Thinking Rule-Wise about Patterns 582
 Thinking Relationally about Quantity, Number, and Numerical Operations 583
 Thinking Representationally about the Relations in Problem Situations 585
 Thinking Conceptually about the Procedural 586
 Anticipating, Conjecturing, and Justifying 588
 Gesturing, Visualizing, and Languaging 590
 The View of Algebraic Thinking that Emerges from this Volume .. 591
References .. 592

Author Index .. 595
Subject Index ... 609
Editors and Contributors 615