Contents

Part I: Curricular Perspective

Preface to Part I .. 3
 Jinfa Cai and Eric Knuth

Functional Thinking as a Route Into Algebra in the Elementary Grades . 5
 Maria L. Blanton and James J. Kaput
 Introduction .. 6
 The Challenge of Curriculum and Instruction 6
 Functional Thinking as a Route to Algebraic Thinking 7
 Functional Thinking in the Elementary Grades 8
 Children’s Capacity for Functional Thinking 9
 Integrating Functional Thinking into Curriculum and Instruction . 16
 Transforming Teachers’ Resource Base to Support Students’ Functional Thinking 17
 Using Children’s Functional Thinking to Leverage Teacher Learning 19
 Creating Classroom Culture and Practice to Support Functional Thinking 20
 Conclusion ... 20
 References ... 21

Developing Students’ Algebraic Thinking in Earlier Grades: Lessons from China and Singapore . 25
 Jinfa Cai, Swee Fong Ng, and John C. Moyer
 Introduction ... 26
 Features of the Chinese and Singaporean Curricula 27
 Algebra Emphases in the Chinese and Singaporean Curricula 27
 The Chinese Curriculum 28
 The Singaporean Curriculum 32
<table>
<thead>
<tr>
<th>Book Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lessons from Chinese and Singaporean School Mathematics</td>
<td>34</td>
</tr>
<tr>
<td>Why Should Curricula Expect Students in Early Grades to Think Algebraically?</td>
<td>35</td>
</tr>
<tr>
<td>Are Young Children Capable of Thinking Algebraically?</td>
<td>36</td>
</tr>
<tr>
<td>How Can We Help Students to Think Arithmetically and Algebraically?</td>
<td>37</td>
</tr>
<tr>
<td>Are Authentic Applications Necessary for Students in Early Grades?</td>
<td>38</td>
</tr>
<tr>
<td>Conclusion</td>
<td>39</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
<tr>
<td>Developing Algebraic Thinking in the Context of Arithmetic</td>
<td>43</td>
</tr>
<tr>
<td>Susan Jo Russell, Deborah Schifter, and Virginia Bastable</td>
<td></td>
</tr>
<tr>
<td>Understanding the Behavior of the Operations</td>
<td>45</td>
</tr>
<tr>
<td>Generalizing and Justifying</td>
<td>51</td>
</tr>
<tr>
<td>1. Articulating General Claims</td>
<td>51</td>
</tr>
<tr>
<td>2. Developing a Mathematical Argument to Justify a General Claim</td>
<td>53</td>
</tr>
<tr>
<td>3. Representation-Based Proof: Tools for Proving in the Elementary Grades</td>
<td>56</td>
</tr>
<tr>
<td>Extending the Number System</td>
<td>59</td>
</tr>
<tr>
<td>Using Notation with Meaning</td>
<td>63</td>
</tr>
<tr>
<td>Connecting Arithmetic and Algebra</td>
<td>67</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>The Role of Theoretical Analysis in Developing Algebraic Thinking:</td>
<td>71</td>
</tr>
<tr>
<td>A Vygotskian Perspective</td>
<td></td>
</tr>
<tr>
<td>Jean Schmittau</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>Orienting Children to Theoretical Concepts</td>
<td>74</td>
</tr>
<tr>
<td>Role of Psychological Tools</td>
<td>76</td>
</tr>
<tr>
<td>The Part-Whole Relation</td>
<td>76</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>The Arithmetic-Algebra Connection: A Historical-Pedagogical Perspective</td>
<td>87</td>
</tr>
<tr>
<td>K. Subramaniam and Rakhi Banerjee</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>Arithmetic and Algebra in the Indian Mathematical Tradition</td>
<td>91</td>
</tr>
<tr>
<td>Building on Students’ Understanding of Arithmetic</td>
<td>95</td>
</tr>
<tr>
<td>The Arithmetic Algebra Connection—A Framework</td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
<tr>
<td>Tad Watanabe</td>
<td></td>
</tr>
<tr>
<td>School Algebra and Algebra in Early Grades</td>
<td>110</td>
</tr>
</tbody>
</table>
Methodology .. 111
Algebra in Japanese Curriculum 112
Mathematical Expressions in Japanese Curriculum 114
Mathematical Expressions in Japanese Textbooks 114
Discussion ... 121
References ... 123

Commentary on Part I ... 125
Jeremy Kilpatrick
Algebra First ... 126
A Curriculum Topic .. 127
Numerical Patterns .. 128
Word Problems .. 128
Multiple Perspectives ... 129
References ... 129

Part II: Cognitive Perspective

Preface to Part II ... 135
Eric Knuth and Jinfa Cai

Algebraic Thinking with and without Algebraic Representation:
A Pathway for Learning .. 137
Murray S. Britt and Kathryn C. Irwin
Introduction ... 138
Children’s Understanding of Generalities for Operations
 Before Schooling .. 139
Algebraic Thinking and the New Zealand Numeracy Project . 140
Students’ Algebraic Thinking in the Last Year of Intermediate
 School (Age 11–12) ... 146
The Growth of Algebraic Thinking from Numbers to Symbols:
 A Longitudinal Study 147
Discussion ... 152
 A Pathway for Algebraic Thinking 153
References ... 157

Examining Students’ Algebraic Thinking in a Curricular Context:
A Longitudinal Study ... 161
Jinfa Cai, John C. Moyer, Ning Wang, and Bikai Nie
 Standards-Based and Traditional Curricula in the United States . 162
LieCal Project .. 163
Highlights of the Differences between CMP and Non-CMP
 Curricula ... 164
Defining Variables ... 165
Defining Equations .. 165
Introducing Equation Solving 166
Using Mathematical Problems 168
Highlights of the Differences between CMP and Non-CMP
Classroom Instruction 169
Conceptual and Procedural Emphases 170
Instructional Tasks 171
Students’ Development of Algebraic Thinking: Methodological
Considerations ... 172
The Focus of Algebraic Thinking 173
Tasks and Data Analysis 174
Findings about the Development of Students’ Algebraic Thinking 174
Representing Situations 175
Solving Equations 177
Making Generalizations 178
Conclusions and Instructional Implications 180
References ... 183

Years 2 to 6 Students’ Ability to Generalise: Models, Representations
and Theory for Teaching and Learning 187
Tom J. Cooper and Elizabeth Warren
Perspectives on the Mathematics of Early Algebra 188
Representation and Generalisation 190
Models and Representations 191
Generalisation ... 191
Focus of EATP .. 193
Focus of Chapter 194
Design of EATP .. 194
Findings and Discussion 196
Patterns .. 197
Change and Functions 198
Equations and Equivalence 201
Generalising Principles and Abstract Representations 204
Conclusions and Implications 206
Models and Representations 206
Generalisation .. 207
Theoretical Framework 209
References ... 211

Algebra in the Middle School: Developing Functional Relationships
Through Quantitative Reasoning 215
Amy B. Ellis
What Is Quantitative Reasoning? 216
The Importance of (and Difficulties with) Functional Thinking 218
An Alternative Approach to Function: Quantities and Covariation 222
A Flexible Understanding of Functions 226
Coordinating Covariation and Correspondence Approaches 226
Flexibility Across Forms 230
Fostering a Focus on Quantities ... 234
References ... 235

Representational Competence and Algebraic Modeling 239
Andrew Izsák
Early Results on Students’ Understandings of Standard
Representations in Algebra ... 241
Theoretical Accounts of Reasoning with External Representations . 241
Students’ Capacities to Reason with External Representations .. 243
First Result: Criteria for Evaluating External Representations . 244
Second Result: Adaptive Interpretation 249
Conclusion ... 253
References ... 256

Middle School Students’ Understanding of Core Algebraic Concepts:
Equivalence & Variable ... 259
Eric J. Knuth, Martha W. Alibali, Nicole M. McNeil, Aaron Weinberg,
and Ana C. Stephens
Introduction ... 260
Student Understanding of Equivalence & Variable 261
Equivalence ... 261
Variable ... 262
Method .. 262
Participants ... 262
Data Collection .. 263
Coding .. 264
Results ... 266
Interpretation of the Equal Sign 266
Performance on the Equivalent Equations Problem 267
Interpretation of a Literal Symbol 270
Performance on the which Is Larger Problem 271
Discussion .. 273
Equivalence Results .. 273
Variable Results .. 274
Concluding Remarks ... 275
References ... 275

An Approach to Geometric and Numeric Patterning that Fosters Second
Grade Students’ Reasoning and Generalizing about Functions
and Co-variation ... 277
Joan Moss and Susan London McNab
Introduction ... 277
Our Project ... 279
Our Approach: Theoretical .. 279
Instructional Sequence .. 281
Visual Representation: Geometric Growing Patterns 281
Numeric Representations: Function Machine 282
Integration Activities: Pattern Sidewalk 283
Role of the Teacher 284
Procedures and Measures: Grade 2 Interventions 285
Results 285
Finding Rules for Patterns and Generating Patterns Based on Given Rules 286
Constructing a Pattern from a Rule: “A ‘number times two, plus one’ pattern?” 286
Finding a Rule for a Given Pattern: “Position number times three, plus one” 287
Students’ Invention of Multiplication 288
Deconstructing Multiplication: “Double the position, plus the position” 289
Using a Structural Understanding of Multiplication to Predict Far Positions: “It’s 40 up, and 3 to the side” 289
The Discovery of Zero 291
Zero as a Coefficient: “Zero groups of 4 million is zero” 291
Zero as a Position Number: “the zero-th position” 292
Transfer of Structure 293
Circumventing Whole Object Reasoning 293
Informal Algebraic Expressions of Rules in the Sparky Problem 294
Discussion 295
The Curriculum with Its Focus on Integration 296
Prioritizing Visual Representations of Pattern 297
Pedagogy and Student Inventions 297
Concluding Thoughts 298
References 298

Grade 2 Students’ Non-Symbolic Algebraic Thinking 303
Luis Radford
Introduction 303
Extending Sequences 305
Abstraction 307
The Boundaries of Arithmetic and Algebraic Thinking 308
Layers of Generality 311
Beyond Intuited Indeterminacy 312
A General Overview 316
Synthesis and Concluding Remarks 317
References 320

Formation of Pattern Generalization Involving Linear Figural Patterns Among Middle School Students: Results of a Three-Year Study 323
F.D. Rivera and Joanne Rossi Becker
Anticipating What Is to Come: Initial Reflections on Our Three-Year Data from the Clinical Interviews 327
Cognitive Issues Surrounding Pattern Generalization: What We Know from Various Theoretical Perspectives and Empirical Studies .. 329
Clarifying the Definition of Pattern Generalization 329
Types of Algebraic Generalization Involving Figural Patterns ... 330
Methodology ... 331
Classroom Contexts from Years 1 to 3 of the Study 331
Nature and Content of Classroom Teaching Experiments in Years 1 and 2 .. 332
Nature and Content of Classroom Teaching Experiments in Year 3 .. 334
Nature and Content of Clinical Interview Tasks from Years 1 to 3 .. 335
Data Collection and Analysis and Relevant Study Protocols ... 335
Findings and Discussion Part 1: Accounting for Constructive and Deconstructive Generalizations .. 338
Findings and Discussion Part 2: Understanding the Operations Needed in Developing a Pattern Generalization ... 342
Findings and Discussion Part 3: Factors Affecting Students’ Ability to Develop CGs .. 344
Findings and Discussion Part 4: A Three-Year Account of Classroom Mathematical Practices that Encouraged the Formation of Generalization Among Our Middle School Students .. 347
Year 1 Classroom Practices: From Figurally- to Numerically-Driven CSGs .. 348
Year 2 Practice: Continued Use of Numerically-Driven CSGs and a Refinement in the Case of Decreasing Linear Patterns .. 351
Year 3 Practices: A Third Shift Back to Figural-based Generalization and the Consequent Occurrence of CSGs, CNGs, and DGs .. 352
Findings and Discussion Part 5: Middle School Students’ Capability in Justifying CSGs .. 354
Findings and Discussion Part 6: Middle School Students’ Capability in Constructing and Justifying CNGs and DGs ... 357
Conclusion ... 362
References ... 363

Commentary on Part II .. 367
Bharath Sriraman and Kyeong-Hwa Lee
Introductory Remarks .. 367
Early Algebraization Versus Meaningful Arithmetic 368
Generalized Arithmetic, Generalizing, Generalization 369
From Haeckel to Lamarck to Early Algebraization 370
References ... 372
Part III: Instructional Perspective

Preface to Part III ... 377
 Eric Knuth and Jinfa Cai

Prospective Middle-School Mathematics Teachers’ Knowledge of Equations and Inequalities ... 379
 Nerida F. Ellerton and M.A. (Ken) Clements
 The Context .. 379
 Mathematical Considerations Relating to the Teaching and Learning of Equations and Inequalities 380
 Student Misconceptions in Regard to Quadratic Equations 383
 Student Misconceptions with Regard to Linear Inequalities 384
 The Pre-Service Teachers Involved, and Tasks Used, in the Present Study ... 386
 “Clever” Tasks .. 387
 Developing the Pencil-and-Paper Instruments 389
 The Eight Equation/Algebraic Inequality Pairs 389
 Study Design, and Results .. 395
 Population and Sample Considerations 395
 Results .. 396
 Conclusions in Relation to the Prospective Teachers’ Knowledge of Algebraic Inequalities ... 399
 Prospective Teachers’ Knowledge in Relation to Quadratic Equations ... 401
 Bad News, Good News and Some Concluding Comments 402
 Bad News ... 402
 Good News ... 403
 Student Confidence Considerations 406
 Concluding Comments ... 406
 References .. 407

The Algebraic Nature of Fractions: Developing Relational Thinking in Elementary School ... 409
 Susan B. Empson, Linda Levi, and Thomas P. Carpenter
 What Is Relational Thinking? .. 411
 Use of Relational Thinking in Learning Fractions 413
 Understanding Fractional Quantities Through Relational Thinking ... 413
 Use of Relational Thinking to Make Sense of Operations Involving Fractions ... 416
 Discussion of Cases ... 422
 A Conjecture Concerning Relational Thinking as a Tool in Learning New Number Content ... 423
Professional Development to Support Students’ Algebraic Reasoning: An Example from the Problem-Solving Cycle Model
Karen Koellner, Jennifer Jacobs, Hilda Borko, Sarah Roberts, and Craig Schneider

Introduction
The Problem-Solving Cycle Model of Professional Development
The PSC as Implemented in the STAAR Project
Impact of the PSC on Instructional Practice: A Case Study

Methods
Ken Bryant
Data Sources
Data Analysis

Results and Discussion
Patterns Drawn from QMI Coding and Analysis
Vignette Analysis: Ken’s Skyscraper Windows Lesson

Conclusions

Using Habermas’ Theory of Rationality to Gain Insight into Students’ Understanding of Algebraic Language
Francesca Morselli and Paolo Boero

Introduction

Adaptation of Habermas’ Construct of Rational Behavior to the Case of the Use of Algebraic Language
Epistemic Rationality
Teleological Rationality
Communicative Rationality

Relationships with Other Studies on Proving and Modeling and on the Teaching and Learning of Algebra

Description and Interpretation of Student Behavior

Habermas’ Analytical Tool: Examples of Analysis of Student Behavior at Different School Levels
Habermas Analytical Tool: Analysis of a Teaching Experiment

The Context of the Study: Description of the Research Project
First Task: Choose a Number
Second Task: Representing the Game

Discussion
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Issues and Educational Strategies for Encouraging Teachers</td>
<td></td>
</tr>
<tr>
<td>to Promote a Linguistic and Metacognitive Approach to Early Algebra</td>
<td>483</td>
</tr>
<tr>
<td>Annalisa Cusi, Nicolina A. Malara, and Giancarlo Navarra</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>483</td>
</tr>
<tr>
<td>In Europe</td>
<td>484</td>
</tr>
<tr>
<td>From Traditional Algebra to Early Algebra</td>
<td>485</td>
</tr>
<tr>
<td>Early Algebra as a Meta-Subject and the ArAl Project</td>
<td>486</td>
</tr>
<tr>
<td>Socio-Constructive Teaching and Teacher Training</td>
<td>487</td>
</tr>
<tr>
<td>The Role of the Teacher’s Reflection</td>
<td>488</td>
</tr>
<tr>
<td>The Role of the ArAl Glossary in Teacher Training</td>
<td>490</td>
</tr>
<tr>
<td>Algebraic Babbling</td>
<td>492</td>
</tr>
<tr>
<td>Algebraic Babbling → Algebra as a Language</td>
<td>493</td>
</tr>
<tr>
<td>Algebraic Babbling → Syntax, Semantics → Brioshi</td>
<td>494</td>
</tr>
<tr>
<td>Brioshi → Canonical/Non Canonical form of a Number → ‘=’</td>
<td>495</td>
</tr>
<tr>
<td>The Multi-Commented Transcripts Methodology (MCTM)</td>
<td>496</td>
</tr>
<tr>
<td>From the Comments to a Classification of Attitudes</td>
<td>499</td>
</tr>
<tr>
<td>Example</td>
<td>502</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>504</td>
</tr>
<tr>
<td>References</td>
<td>507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Procedural Focus and a Relationship Focus to Algebra: How U.S.</td>
<td></td>
</tr>
<tr>
<td>Teachers and Japanese Teachers Treat Systems of Equations</td>
<td>511</td>
</tr>
<tr>
<td>Margaret Smith</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>512</td>
</tr>
<tr>
<td>Algebraic Reasoning</td>
<td>512</td>
</tr>
<tr>
<td>TIMSS Video Studies</td>
<td>514</td>
</tr>
<tr>
<td>Data</td>
<td>515</td>
</tr>
<tr>
<td>Analysis</td>
<td>515</td>
</tr>
<tr>
<td>Two Teachers’ Lessons</td>
<td>516</td>
</tr>
<tr>
<td>Discussion of Key Differences</td>
<td>516</td>
</tr>
<tr>
<td>Conclusions</td>
<td>526</td>
</tr>
<tr>
<td>References</td>
<td>526</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Algebraic Equations with Variation in Chinese Classroom</td>
<td></td>
</tr>
<tr>
<td>Jing Li, Aihui Peng, and Naiqing Song</td>
<td>529</td>
</tr>
<tr>
<td>Introduction</td>
<td>529</td>
</tr>
<tr>
<td>The Source of the Data</td>
<td>531</td>
</tr>
<tr>
<td>Theoretical Framework</td>
<td>531</td>
</tr>
<tr>
<td>The Method of Research</td>
<td>533</td>
</tr>
<tr>
<td>Analysis of Data</td>
<td>533</td>
</tr>
<tr>
<td>The Introduction of the Concept of Equation</td>
<td>533</td>
</tr>
</tbody>
</table>
Early Algebraization
A Global Dialogue from Multiple Perspectives
Cai, J.; Knuth, E. (Eds.)
2011, XXIV, 624 p., Hardcover
ISBN: 978-3-642-17734-7