Contents

Part I: Curricular Perspective

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part I</td>
<td>3</td>
</tr>
<tr>
<td>Jinfa Cai and Eric Knuth</td>
<td></td>
</tr>
<tr>
<td>Functional Thinking as a Route Into Algebra in the Elementary Grades</td>
<td>5</td>
</tr>
<tr>
<td>Maria L. Blanton and James J. Kaput</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>The Challenge of Curriculum and Instruction</td>
<td>6</td>
</tr>
<tr>
<td>Functional Thinking as a Route to Algebraic Thinking</td>
<td>7</td>
</tr>
<tr>
<td>Functional Thinking in the Elementary Grades</td>
<td>8</td>
</tr>
<tr>
<td>Children’s Capacity for Functional Thinking</td>
<td>9</td>
</tr>
<tr>
<td>Integrating Functional Thinking into Curriculum and Instruction</td>
<td>16</td>
</tr>
<tr>
<td>Transforming Teachers’ Resource Base to Support Students’</td>
<td>17</td>
</tr>
<tr>
<td>Functional Thinking</td>
<td></td>
</tr>
<tr>
<td>Using Children’s Functional Thinking to Leverage Teacher Learning</td>
<td>19</td>
</tr>
<tr>
<td>Creating Classroom Culture and Practice to Support</td>
<td>20</td>
</tr>
<tr>
<td>Functional Thinking</td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
</tbody>
</table>

Developing Students’ Algebraic Thinking in Earlier Grades: Lessons from China and Singapore

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinfa Cai, Swee Fong Ng, and John C. Moyer</td>
<td>25</td>
</tr>
<tr>
<td>Introduction</td>
<td>26</td>
</tr>
<tr>
<td>Features of the Chinese and Singaporean Curricula</td>
<td>27</td>
</tr>
<tr>
<td>Algebra Emphases in the Chinese and Singaporean Curricula</td>
<td>27</td>
</tr>
<tr>
<td>The Chinese Curriculum</td>
<td>28</td>
</tr>
<tr>
<td>The Singaporean Curriculum</td>
<td>32</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Lessons from Chinese and Singaporean School Mathematics</td>
<td>34</td>
</tr>
<tr>
<td>Why Should Curricula Expect Students in Early Grades to Think Algebraically?</td>
<td>35</td>
</tr>
<tr>
<td>Are Young Children Capable of Thinking Algebraically?</td>
<td>36</td>
</tr>
<tr>
<td>How Can We Help Students to Think Arithmetically and Algebraically?</td>
<td>37</td>
</tr>
<tr>
<td>Are Authentic Applications Necessary for Students in Early Grades?</td>
<td>38</td>
</tr>
<tr>
<td>Conclusion</td>
<td>39</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
<tr>
<td>Developing Algebraic Thinking in the Context of Arithmetic</td>
<td>43</td>
</tr>
<tr>
<td>Susan Jo Russell, Deborah Schifter, and Virginia Bastable</td>
<td></td>
</tr>
<tr>
<td>Understanding the Behavior of the Operations</td>
<td>45</td>
</tr>
<tr>
<td>Generalizing and Justifying</td>
<td>51</td>
</tr>
<tr>
<td>1. Articulating General Claims</td>
<td>51</td>
</tr>
<tr>
<td>2. Developing a Mathematical Argument to Justify a General Claim</td>
<td>53</td>
</tr>
<tr>
<td>3. Representation-Based Proof: Tools for Proving in the Elementary Grades</td>
<td>56</td>
</tr>
<tr>
<td>Extending the Number System</td>
<td>59</td>
</tr>
<tr>
<td>Using Notation with Meaning</td>
<td>63</td>
</tr>
<tr>
<td>Connecting Arithmetic and Algebra</td>
<td>67</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>The Role of Theoretical Analysis in Developing Algebraic Thinking:</td>
<td>71</td>
</tr>
<tr>
<td>A Vygotskian Perspective</td>
<td></td>
</tr>
<tr>
<td>Jean Schmittau</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>Orienting Children to Theoretical Concepts</td>
<td>74</td>
</tr>
<tr>
<td>Role of Psychological Tools</td>
<td>76</td>
</tr>
<tr>
<td>The Part-Whole Relation</td>
<td>76</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>The Arithmetic-Algebra Connection: A Historical-Pedagogical Perspective</td>
<td>87</td>
</tr>
<tr>
<td>K. Subramaniam and Rakhi Banerjee</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>Arithmetic and Algebra in the Indian Mathematical Tradition</td>
<td>91</td>
</tr>
<tr>
<td>Building on Students’ Understanding of Arithmetic</td>
<td>95</td>
</tr>
<tr>
<td>The Arithmetic Algebra Connection—A Framework</td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
<tr>
<td>Tad Watanabe</td>
<td></td>
</tr>
<tr>
<td>School Algebra and Algebra in Early Grades</td>
<td>110</td>
</tr>
</tbody>
</table>
Methodology .. 111
Algebra in Japanese Curriculum 112
Mathematical Expressions in Japanese Curriculum 114
Mathematical Expressions in Japanese Textbooks 114
Discussion ... 121
References ... 123

Commentary on Part I .. 125
 Jeremy Kilpatrick
 Algebra First .. 126
 A Curriculum Topic 127
 Numerical Patterns 128
 Word Problems 128
 Multiple Perspectives 129
 References .. 129

Part II: Cognitive Perspective

Preface to Part II ... 135
 Eric Knuth and Jinfa Cai

Algebraic Thinking with and without Algebraic Representation:
 A Pathway for Learning 137
 Murray S. Britt and Kathryn C. Irwin
 Introduction .. 138
 Children’s Understanding of Generalities for Operations
 Before Schooling 139
 Algebraic Thinking and the New Zealand Numeracy Project ... 140
 Students’ Algebraic Thinking in the Last Year of Intermediate
 School (Age 11–12) 146
 The Growth of Algebraic Thinking from Numbers to Symbols:
 A Longitudinal Study 147
 Discussion ... 152
 A Pathway for Algebraic Thinking 153
 References .. 157

Examining Students’ Algebraic Thinking in a Curricular Context:
 A Longitudinal Study 161
 Jinfa Cai, John C. Moyer, Ning Wang, and Bikai Nie
 Standards-Based and Traditional Curricula in the United States ... 162
 LieCal Project 163
 Highlights of the Differences between CMP and Non-CMP
 Curricula .. 164
 Defining Variables 165
 Defining Equations 165
 Introducing Equation Solving 166
 Using Mathematical Problems 168
Contents

Highlights of the Differences between CMP and Non-CMP
 Classroom Instruction ... 169
 Conceptual and Procedural Emphases 170
 Instructional Tasks .. 171

Students’ Development of Algebraic Thinking: Methodological
 Considerations ... 172
 The Focus of Algebraic Thinking 173
 Tasks and Data Analysis .. 174

Findings about the Development of Students’ Algebraic Thinking . 174
 Representing Situations .. 175
 Solving Equations .. 177
 Making Generalizations ... 178

Conclusions and Instructional Implications 180

References .. 183

Years 2 to 6 Students’ Ability to Generalise: Models, Representations
 and Theory for Teaching and Learning 187

Tom J. Cooper and Elizabeth Warren

 Perspectives on the Mathematics of Early Algebra 188
 Representation and Generalisation 190
 Models and Representations 191
 Generalisation .. 191
 Focus of EATP ... 193
 Focus of Chapter .. 194
 Design of EATP ... 194

Findings and Discussion .. 196
 Patterns ... 197
 Change and Functions .. 198
 Equations and Equivalence 201
 Generalising Principles and Abstract Representations 204

Conclusions and Implications .. 206
 Models and Representations 206
 Generalisation .. 207
 Theoretical Framework .. 209

References .. 211

Algebra in the Middle School: Developing Functional Relationships
 Through Quantitative Reasoning 215

Amy B. Ellis

 What Is Quantitative Reasoning? 216
 The Importance of (and Difficulties with) Functional Thinking . 218
 An Alternative Approach to Function: Quantities and Covariation . 222
 A Flexible Understanding of Functions 226
 Coordinating Covariation and Correspondence Approaches 226
 Flexibility Across Forms 230
Fostering a Focus on Quantities ... 234
References .. 235

Representational Competence and Algebraic Modeling 239
Andrew Izsák
Early Results on Students' Understandings of Standard Representations in Algebra ... 241
Theoretical Accounts of Reasoning with External Representations .. 241
Students' Capacities to Reason with External Representations .. 243
First Result: Criteria for Evaluating External Representations .. 244
Second Result: Adaptive Interpretation ... 249
Conclusion .. 253
References .. 256

Middle School Students’ Understanding of Core Algebraic Concepts: Equivalence & Variable 259
Eric J. Knuth, Martha W. Alibali, Nicole M. McNeil, Aaron Weinberg, and Ana C. Stephens
Introduction .. 260
Student Understanding of Equivalence & Variable ... 261
Equivalence .. 261
Variable ... 262
Method ... 262
Participants ... 262
Data Collection .. 263
Coding .. 264
Results ... 266
Interpretation of the Equal Sign ... 266
Performance on the Equivalent Equations Problem .. 267
Interpretation of a Literal Symbol .. 270
Performance on the which Is Larger Problem .. 271
Discussion .. 273
Equivalence Results .. 273
Variable Results .. 274
Concluding Remarks .. 275
References .. 275

An Approach to Geometric and Numeric Patterning that Fosters Second Grade Students’ Reasoning and Generalizing about Functions and Co-variation 277
Joan Moss and Susan London McNab
Introduction .. 277
Our Project ... 279
Our Approach: Theoretical ... 279
Instructional Sequence .. 281
Visual Representation: Geometric Growing Patterns ... 281
Numeric Representations: Function Machine	282
Integration Activities: Pattern Sidewalk	283
Role of the Teacher	284
Procedures and Measures: Grade 2 Interventions	285
Results	285
Finding Rules for Patterns and Generating Patterns Based on Given Rules	286
Constructing a Pattern from a Rule: “A ‘number times two, plus one’ pattern?”	286
Finding a Rule for a Given Pattern: “Position number times three, plus one”	287
Students’ Invention of Multiplication	288
Deconstructing Multiplication: “Double the position, plus the position”	289
Using a Structural Understanding of Multiplication to Predict Far Positions: “It’s 40 up, and 3 to the side”	289
The Discovery of Zero	291
Zero as a Coefficient: “Zero groups of 4 million is zero”	291
Zero as a Position Number: “the zero-th position”	292
Transfer of Structure	293
Circumventing Whole Object Reasoning	293
Informal Algebraic Expressions of Rules in the Sparky Problem	294
Discussion	295
The Curriculum with Its Focus on Integration	296
Prioritizing Visual Representations of Pattern	297
Pedagogy and Student Inventions	297
Concluding Thoughts	298
References	298

Grade 2 Students’ Non-Symbolic Algebraic Thinking 303

Luis Radford

Introduction	303
Extending Sequences	305
Abstraction	307
The Boundaries of Arithmetic and Algebraic Thinking	308
Layers of Generality	311
Beyond Intuited Indeterminacy	312
A General Overview	316
Synthesis and Concluding Remarks	317
References	320

Formation of Pattern Generalization Involving Linear Figural Patterns Among Middle School Students: Results of a Three-Year Study 323

F.D. Rivera and Joanne Rossi Becker

| Anticipating What Is to Come: Initial Reflections on Our Three-Year Data from the Clinical Interviews | 327 |
Cognitive Issues Surrounding Pattern Generalization: What We Know from Various Theoretical Perspectives and Empirical Studies .. 329
Clarifying the Definition of Pattern Generalization 329
Types of Algebraic Generalization Involving Figural Patterns 330
Methodology .. 331
Classroom Contexts from Years 1 to 3 of the Study 331
Nature and Content of Classroom Teaching Experiments in Years 1 and 2 .. 332
Nature and Content of Classroom Teaching Experiments in Year 3 .. 334
Nature and Content of Clinical Interview Tasks from Years 1 to 3 ... 335
Data Collection and Analysis and Relevant Study Protocols . 335
Findings and Discussion Part 1: Accounting for Constructive and Deconstructive Generalizations 338
Findings and Discussion Part 2: Understanding the Operations Needed in Developing a Pattern Generalization 342
Findings and Discussion Part 3: Factors Affecting Students’ Ability to Develop CGs 344
Findings and Discussion Part 4: A Three-Year Account of Classroom Mathematical Practices that Encouraged the Formation of Generalization Among Our Middle School Students 347
Year 1 Classroom Practices: From Figurally- to Numerically-Driven CSGs .. 348
Year 2 Practice: Continued Use of Numerically-Driven CSGs and a Refinement in the Case of Decreasing Linear Patterns ... 351
Year 3 Practices: A Third Shift Back to Figural-based Generalization and the Consequent Occurrence of CSGs, CNGs, and DGs 352
Findings and Discussion Part 5: Middle School Students’ Capability in Justifying CSGs .. 354
Findings and Discussion Part 6: Middle School Students’ Capability in Constructing and Justifying CNGs and DGs .. 357
Conclusion .. 362
References ... 363

Commentary on Part II .. 367
Bharath Sriraman and Kyeong-Hwa Lee
Introductory Remarks ... 367
Early Algebraization Versus Meaningful Arithmetic 368
Generalized Arithmetic, Generalizing, Generalization 369
From Haeckel to Lamarck to Early Algebraization 370
References ... 372
Part III: Instructional Perspective

Preface to Part III .. 377
 Eric Knuth and Jinfa Cai

Prospective Middle-School Mathematics Teachers’ Knowledge of Equations and Inequalities 379
 Nerida F. Ellerton and M.A. (Ken) Clements
 The Context ... 379
 Mathematical Considerations Relating to the Teaching and Learning of Equations and Inequalities 380
 Student Misconceptions in Regard to Quadratic Equations . 383
 Student Misconceptions with Regard to Linear Inequalities . 384
The Pre-Service Teachers Involved, and Tasks Used, in the Present Study .. 386
 “Clever” Tasks .. 387
Developing the Pencil-and-Paper Instruments 389
The Eight Equation/Algebraic Inequality Pairs 389
Study Design, and Results 395
 Population and Sample Considerations 395
 Results .. 396
Conclusions in Relation to the Prospective Teachers’ Knowledge of Algebraic Inequalities 399
 Prospective Teachers’ Knowledge in Relation to Quadratic Equations .. 401
Bad News, Good News and Some Concluding Comments 402
 Bad News .. 402
 Good News ... 403
 Student Confidence Considerations 406
 Concluding Comments 406
References .. 407

The Algebraic Nature of Fractions: Developing Relational Thinking in Elementary School 409
 Susan B. Empson, Linda Levi, and Thomas P. Carpenter
 What Is Relational Thinking? 411
 Use of Relational Thinking in Learning Fractions 413
 Understanding Fractional Quantities Through Relational Thinking .. 413
 Use of Relational Thinking to Make Sense of Operations Involving Fractions 416
 Discussion of Cases 422
A Conjecture Concerning Relational Thinking as a Tool in Learning New Number Content 423
Research Advances .. 477
Educational Implications 478
References .. 479

Theoretical Issues and Educational Strategies for Encouraging Teachers
to Promote a Linguistic and Metacognitive Approach to Early Algebra .. 483
Annalisa Cusi, Nicolina A. Malara, and Giancarlo Navarra

Introduction .. 483
In Europe .. 484
From Traditional Algebra to Early Algebra 485
Early Algebra as a Meta-Subject and the ArAl Project 486
Socio-Constructive Teaching and Teacher Training 487
The Role of the Teacher's Reflection 488
The Role of the ArAl Glossary in Teacher Training 490
Algebraic Babbling ... 492
Algebraic Babbling → Algebra as a Language 493
Algebraic Babbling → Syntax, Semantics → Brioshi .. 494
Brioshi → Canonical/Non Canonical form of a
Number → '=' .. 495
The Multi-Commented Transcripts Methodology (MCTM) . 496
From the Comments to a Classification of Attitudes 499
Example .. 502
Concluding Remarks 504
References .. 507

A Procedural Focus and a Relationship Focus to Algebra: How U.S.
Teachers and Japanese Teachers Treat Systems of Equations 511
Margaret Smith

Background ... 512
Algebraic Reasoning 512
TIMSS Video Studies 514
Data ... 515
Analysis .. 515
Two Teachers’ Lessons 516
Discussion of Key Differences 516
Conclusions ... 526
References .. 526

Teaching Algebraic Equations with Variation in Chinese Classroom 529
Jing Li, Aihui Peng, and Naiqing Song

Introduction .. 529
The Source of the Data 531
Theoretical Framework 531
The Method of Research 533
Analysis of Data ... 533
The Introduction of the Concept of Equation 533
Contents

The Improvement of Understanding of Equation 535
Equations Solving .. 539
The Application of Equations 541
Discussion and Conclusion .. 545
 Process of Teaching Algebra with Variation 545
 Operation of Teaching Algebra with Variation 546
Final Comments .. 548
References .. 555

Commentary on Part III .. 557
John Mason
 Introduction ... 557
 Systematics: Structure of Activity 558
 What Is Algebra? .. 559
 What Is and What Could Be: Teaching Algebra as an Activity 560
 Traditional Algebra Teaching 561
 Envisioned Algebra Teaching 563
 What Makes ‘Algebra’ Early? 566
 Comparisons .. 568
 Transforming Algebra Teaching and Learning as an Activity 568
 How Can Locally Successful Teaching Be Engineered for All? 569
 What Is and Could Be Researched? 570
 What Is Really Researched? 571
 Conclusions ... 574
 References .. 574

Overall Commentary on Early Algebraization: Perspectives for
Research and Teaching .. 579
Carolyn Kieran
 Shaping the Notion of Algebraic Thinking within Early Algebra 580
 Thinking about the General in the Particular 581
 Thinking Rule-Wise about Patterns 582
 Thinking Relationally about Quantity, Number, and Numerical
 Operations ... 583
 Thinking Representationally about the Relations in Problem
 Situations ... 585
 Thinking Conceptually about the Procedural 586
 Anticipating, Conjecturing, and Justifying 588
 Gesturing, Visualizing, and Languaging 590
 The View of Algebraic Thinking that Emerges from this Volume 591
 References .. 592

Author Index .. 595

Subject Index .. 609

Editors and Contributors .. 615
Early Algebraization
A Global Dialogue from Multiple Perspectives
Cai, J.; Knuth, E. (Eds.)
2011, XXIV, 624 p., Hardcover
ISBN: 978-3-642-17734-7