Contents

Part I: Curricular Perspective

Preface to Part I 3
 Jinfa Cai and Eric Knuth

Functional Thinking as a Route Into Algebra in the Elementary Grades . 5
 Maria L. Blanton and James J. Kaput
 Introduction 6
 The Challenge of Curriculum and Instruction 6
 Functional Thinking as a Route to Algebraic Thinking ... 7
 Functional Thinking in the Elementary Grades 8
 Children’s Capacity for Functional Thinking 9
 Integrating Functional Thinking into Curriculum and Instruction ... 16
 Transforming Teachers’ Resource Base to Support Students’
 Functional Thinking 17
 Using Children’s Functional Thinking to Leverage Teacher
 Learning 19
 Creating Classroom Culture and Practice to Support
 Functional Thinking 20
 Conclusion 20
 References 21

Developing Students’ Algebraic Thinking in Earlier Grades: Lessons
from China and Singapore 25
 Jinfa Cai, Swee Fong Ng, and John C. Moyer
 Introduction 26
 Features of the Chinese and Singaporean Curricula 27
 Algebra Emphases in the Chinese and Singaporean
 Curricula 27
 The Chinese Curriculum 28
 The Singaporean Curriculum 32
<table>
<thead>
<tr>
<th>Methodology</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra in Japanese Curriculum</td>
<td>112</td>
</tr>
<tr>
<td>Mathematical Expressions in Japanese Curriculum</td>
<td>114</td>
</tr>
<tr>
<td>Mathematical Expressions in Japanese Textbooks</td>
<td>114</td>
</tr>
<tr>
<td>Discussion</td>
<td>121</td>
</tr>
<tr>
<td>References</td>
<td>123</td>
</tr>
</tbody>
</table>

Commentary on Part I .. 125
Jeremy Kilpatrick

- Algebra First .. 126
- A Curriculum Topic .. 127
- Numerical Patterns .. 128
- Word Problems .. 128
- Multiple Perspectives .. 129
- References ... 129

Part II: Cognitive Perspective

Preface to Part II .. 135
Eric Knuth and Jinfa Cai

Algebraic Thinking with and without Algebraic Representation:

- A Pathway for Learning ... 137
 Murray S. Britt and Kathryn C. Irwin
 - Introduction .. 138
 - Children’s Understanding of Generalities for Operations
 Before Schooling ... 139
 - Algebraic Thinking and the New Zealand Numeracy Project ... 140
 - Students’ Algebraic Thinking in the Last Year of Intermediate
 School (Age 11–12) ... 146
 - The Growth of Algebraic Thinking from Numbers to Symbols:
 A Longitudinal Study .. 147
 - Discussion .. 152
 - A Pathway for Algebraic Thinking 153
 - References .. 157

Examining Students’ Algebraic Thinking in a Curricular Context:

- A Longitudinal Study ... 161
 Jinfa Cai, John C. Moyer, Ning Wang, and Bikai Nie
 - Standards-Based and Traditional Curricula in the United States ... 162
 - LieCal Project .. 163
 - Highlights of the Differences between CMP and Non-CMP Curricula 164
 - Defining Variables ... 165
 - Defining Equations .. 165
 - Introducing Equation Solving 166
 - Using Mathematical Problems 168
Highlights of the Differences between CMP and Non-CMP
Classroom Instruction .. 169
Conceptual and Procedural Emphases 170
Instructional Tasks ... 171

Students’ Development of Algebraic Thinking: Methodological
Considerations .. 172
The Focus of Algebraic Thinking 173
Tasks and Data Analysis 174
Findings about the Development of Students’ Algebraic Thinking 174
Representing Situations 175
Solving Equations .. 177
Making Generalizations 178
Conclusions and Instructional Implications 180
References ... 183

Years 2 to 6 Students’ Ability to Generalise: Models, Representations
and Theory for Teaching and Learning 187
Tom J. Cooper and Elizabeth Warren
Perspectives on the Mathematics of Early Algebra 188
Representation and Generalisation 190
Models and Representations 191
Generalisation .. 191
Focus of EATP .. 193
Focus of Chapter ... 194
Design of EATP ... 194
Findings and Discussion 196
Patterns ... 197
Change and Functions .. 198
Equations and Equivalence 201
Generalising Principles and Abstract Representations 204
Conclusions and Implications 206
Models and Representations 206
Generalisation .. 207
Theoretical Framework 209
References ... 211

Algebra in the Middle School: Developing Functional Relationships
Through Quantitative Reasoning 215
Amy B. Ellis
What Is Quantitative Reasoning? 216
The Importance of (and Difficulties with) Functional Thinking 218
An Alternative Approach to Function: Quantities and Covariation 222
A Flexible Understanding of Functions 226
Coordinating Covariation and Correspondence Approaches 226
Flexibility Across Forms 230
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fostering a Focus on Quantities</td>
<td>234</td>
</tr>
<tr>
<td>References</td>
<td>235</td>
</tr>
<tr>
<td>Representational Competence and Algebraic Modeling</td>
<td>239</td>
</tr>
<tr>
<td>Andrew Izsák</td>
<td></td>
</tr>
<tr>
<td>Early Results on Students’ Understandings of Standard</td>
<td>241</td>
</tr>
<tr>
<td>Representations in Algebra</td>
<td></td>
</tr>
<tr>
<td>Theoretical Accounts of Reasoning with External Representations</td>
<td>241</td>
</tr>
<tr>
<td>Students’ Capacities to Reason with External Representations</td>
<td>243</td>
</tr>
<tr>
<td>First Result: Criteria for Evaluating External Representations</td>
<td>244</td>
</tr>
<tr>
<td>Second Result: Adaptive Interpretation</td>
<td>249</td>
</tr>
<tr>
<td>Conclusion</td>
<td>253</td>
</tr>
<tr>
<td>References</td>
<td>256</td>
</tr>
<tr>
<td>Middle School Students’ Understanding of Core Algebraic Concepts:</td>
<td>259</td>
</tr>
<tr>
<td>Equivalence & Variable</td>
<td></td>
</tr>
<tr>
<td>Eric J. Knuth, Martha W. Alibali, Nicole M. McNeil, Aaron Weinberg,</td>
<td></td>
</tr>
<tr>
<td>and Ana C. Stephens</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>260</td>
</tr>
<tr>
<td>Student Understanding of Equivalence & Variable</td>
<td>261</td>
</tr>
<tr>
<td>Equivalence</td>
<td>261</td>
</tr>
<tr>
<td>Variable</td>
<td>262</td>
</tr>
<tr>
<td>Method</td>
<td>262</td>
</tr>
<tr>
<td>Participants</td>
<td>262</td>
</tr>
<tr>
<td>Data Collection</td>
<td>263</td>
</tr>
<tr>
<td>Coding</td>
<td>264</td>
</tr>
<tr>
<td>Results</td>
<td>266</td>
</tr>
<tr>
<td>Interpretation of the Equal Sign</td>
<td>266</td>
</tr>
<tr>
<td>Performance on the Equivalent Equations Problem</td>
<td>267</td>
</tr>
<tr>
<td>Interpretation of a Literal Symbol</td>
<td>270</td>
</tr>
<tr>
<td>Performance on the which Is Larger Problem</td>
<td>271</td>
</tr>
<tr>
<td>Discussion</td>
<td>273</td>
</tr>
<tr>
<td>Equivalence Results</td>
<td>273</td>
</tr>
<tr>
<td>Variable Results</td>
<td>274</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>275</td>
</tr>
<tr>
<td>References</td>
<td>275</td>
</tr>
<tr>
<td>An Approach to Geometric and Numeric Patterning that Fosters</td>
<td>277</td>
</tr>
<tr>
<td>Second Grade Students’ Reasoning and Generalizing about Functions</td>
<td></td>
</tr>
<tr>
<td>Joan Moss and Susan London McNab</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>Our Project</td>
<td>279</td>
</tr>
<tr>
<td>Our Approach: Theoretical</td>
<td>279</td>
</tr>
<tr>
<td>Instructional Sequence</td>
<td>281</td>
</tr>
<tr>
<td>Visual Representation: Geometric Growing Patterns</td>
<td>281</td>
</tr>
</tbody>
</table>
Numeric Representations: Function Machine 282
Integration Activities: Pattern Sidewalk 283
Role of the Teacher 284
Procedures and Measures: Grade 2 Interventions 285
Results ... 285
Finding Rules for Patterns and Generating Patterns Based
on Given Rules 286
Constructing a Pattern from a Rule: “A ’number times two,
plus one’ pattern?” 286
Finding a Rule for a Given Pattern: “Position number times
three, plus one” 287
Students’ Invention of Multiplication 288
Deconstructing Multiplication: “Double the position, plus
the position” .. 289
Using a Structural Understanding of Multiplication to Predict
Far Positions: “It’s 40 up, and 3 to the side” 289
The Discovery of Zero 291
Zero as a Coefficient: “Zero groups of 4 million is zero” 291
Zero as a Position Number: “the zero-th position” 292
Transfer of Structure 293
Circumventing Whole Object Reasoning 293
Informal Algebraic Expressions of Rules in the Sparky
Problem .. 294
Discussion .. 295
The Curriculum with Its Focus on Integration 296
Prioritizing Visual Representations of Pattern 297
Pedagogy and Student Inventions 297
Concluding Thoughts 298
References ... 298

Grade 2 Students’ Non-Symbolic Algebraic Thinking 303
Luis Radford
Introduction .. 303
Extending Sequences 305
Abstraction .. 307
The Boundaries of Arithmetic and Algebraic Thinking 308
Layers of Generality 311
Beyond Intuited Indeterminacy 312
A General Overview 316
Synthesis and Concluding Remarks 317
References ... 320

Formation of Pattern Generalization Involving Linear Figural Patterns
Among Middle School Students: Results of a Three-Year Study 323
F.D. Rivera and Joanne Rossi Becker
Anticipating What Is to Come: Initial Reflections on Our
Three-Year Data from the Clinical Interviews 327
Cognitive Issues Surrounding Pattern Generalization: What We Know from Various Theoretical Perspectives and Empirical Studies .. 329
Clarifying the Definition of Pattern Generalization 329
Types of Algebraic Generalization Involving Figural Patterns 330
Methodology .. 331
Classroom Contexts from Years 1 to 3 of the Study 331
Nature and Content of Classroom Teaching Experiments
in Years 1 and 2 ... 332
Nature and Content of Classroom Teaching Experiments
in Year 3 .. 334
Nature and Content of Clinical Interview Tasks from Years 1
to 3 .. 335
Data Collection and Analysis and Relevant Study Protocols . 335
Findings and Discussion Part 1: Accounting for Constructive
and Deconstructive Generalizations 338
Findings and Discussion Part 2: Understanding the Operations
Needed in Developing a Pattern Generalization 342
Findings and Discussion Part 3: Factors Affecting Students’
Ability to Develop CGs .. 344
Findings and Discussion Part 4: A Three-Year Account
of Classroom Mathematical Practices that Encouraged
the Formation of Generalization Among Our Middle School
Students .. 347
Year 1 Classroom Practices: From Figurally- to
Numerically-Driven CSGs .. 348
Year 2 Practice: Continued Use of Numerically-Driven CSGs
and a Refinement in the Case of Decreasing Linear
Patterns .. 351
Year 3 Practices: A Third Shift Back to Figural-based
Generalization and the Consequent Occurrence
of CSGs, CNGs, and DGs .. 352
Findings and Discussion Part 5: Middle School Students’
Capability in Justifying CSGs .. 354
Findings and Discussion Part 6: Middle School Students’
Capability in Constructing and Justifying CNGs and DGs . 357
Conclusion .. 362
References .. 363

Commentary on Part II ... 367
Bharath Sriraman and Kyeong-Hwa Lee
Introductory Remarks ... 367
Early Algebraization Versus Meaningful Arithmetic 368
Generalized Arithmetic, Generalizing, Generalization 369
From Haeckel to Lamarck to Early Algebraization 370
References .. 372
Part III: Instructional Perspective

Preface to Part III ... 377
Eric Knuth and Jinfa Cai

Prospective Middle-School Mathematics Teachers’ Knowledge of Equations and Inequalities .. 379
Nerida F. Ellerton and M.A. (Ken) Clements

The Context ... 379
Mathematical Considerations Relating to the Teaching and Learning of Equations and Inequalities 380
Student Misconceptions in Regard to Quadratic Equations . 383
Student Misconceptions with Regard to Linear Inequalities . 384

The Pre-Service Teachers Involved, and Tasks Used, in the Present Study ... 386
“Clever” Tasks .. 387

Developing the Pencil-and-Paper Instruments 389

The Eight Equation/Algebraic Inequality Pairs 389

Study Design, and Results ... 395
Population and Sample Considerations 395

Results ... 396

Conclusions in Relation to the Prospective Teachers’ Knowledge of Algebraic Inequalities 399
Prospective Teachers’ Knowledge in Relation to Quadratic Equations .. 401

Bad News, Good News and Some Concluding Comments 402
Bad News .. 402
Good News ... 403
Student Confidence Considerations 406
Concluding Comments .. 406

References .. 407

The Algebraic Nature of Fractions: Developing Relational Thinking in Elementary School .. 409
Susan B. Empson, Linda Levi, and Thomas P. Carpenter

What Is Relational Thinking? 411
Use of Relational Thinking in Learning Fractions 413
Understanding Fractional Quantities Through Relational Thinking .. 413

Use of Relational Thinking to Make Sense of Operations Involving Fractions ... 416
Discussion of Cases ... 422

A Conjecture Concerning Relational Thinking as a Tool in Learning New Number Content 423
Conclusion .. 425
References .. 426

Professional Development to Support Students’ Algebraic Reasoning:<
An Example from the Problem-Solving Cycle Model 429
Karen Koellner, Jennifer Jacobs, Hilda Borko, Sarah Roberts, and Craig
Schneider

Introduction .. 430
The Problem-Solving Cycle Model of Professional Development . 431
The PSC as Implemented in the STAAR Project 432
Prior Research on the Development and Impact of the PSC 435
Impact of the PSC on Instructional Practice: A Case Study
 Analysis .. 436
Methods .. 436
 Ken Bryant ... 436
Data Sources ... 437
Data Analysis ... 438
Results and Discussion 440
 Patterns Drawn from QMI Coding and Analysis 440
 Vignette Analysis: Ken’s Skyscraper Windows Lesson ... 447
Conclusions .. 450
References .. 451

Using Habermas’ Theory of Rationality to Gain Insight into Students’
Understanding of Algebraic Language 453
Francesca Morselli and Paolo Boero

Introduction .. 453
Habermas’ Construct of Rational Behaviour 454
Adaptation of Habermas’ Construct of Rational Behavior
to the Case of the Use of Algebraic Language 455
 Epistemic Rationality 455
 Teleological Rationality 456
 Communicative Rationality 456
Relationships with Other Studies on Proving and Modeling
and on the Teaching and Learning of Algebra 457
 Proving ... 457
 Modeling .. 459
 Teaching and Learning of Algebra 459
Description and Interpretation of Student Behavior 462
 Habermas’ Analytical Tool: Examples of Analysis of Student
 Behavior at Different School Levels 462
 Habermas Analytical Tool: Analysis of a Teaching Experiment 468
The Context of the Study: Description of the Research Project 468
 First Task: Choose a Number 469
 Second Task: Representing the Game 470
Discussion .. 477
Theoretical Issues and Educational Strategies for Encouraging Teachers to Promote a Linguistic and Metacognitive Approach to Early Algebra

Annalisa Cusi, Nicolina A. Malara, and Giancarlo Navarra

Introduction .. 483
In Europe .. 484
From Traditional Algebra to Early Algebra 485
Early Algebra as a Meta-Subject and the ArAl Project 486
Socio-Constructive Teaching and Teacher Training 487
The Role of the Teacher’s Reflection 488
The Role of the ArAl Glossary in Teacher Training 490
Algebraic Babbling .. 492
Algebraic Babbling → Algebra as a Language 493
Algebraic Babbling → Syntax, Semantics → Brioshi 494
Brioshi → Canonical/Non Canonical form of a Number → ‘=’ .. 495
The Multi-Commented Transcripts Methodology (MCTM) 496
From the Comments to a Classification of Attitudes 499
Example .. 502
Concluding Remarks 504
References .. 507

A Procedural Focus and a Relationship Focus to Algebra: How U.S. Teachers and Japanese Teachers Treat Systems of Equations

Margaret Smith

Background .. 512
Algebraic Reasoning 512
TIMSS Video Studies 514
Data .. 515
Analysis .. 515
Two Teachers’ Lessons 516
Discussion of Key Differences 516
Conclusions .. 526
References .. 526

Teaching Algebraic Equations with Variation in Chinese Classroom

Jing Li, Aihui Peng, and Naiqing Song

Introduction .. 529
The Source of the Data 531
Theoretical Framework 531
The Method of Research 533
Analysis of Data .. 533
The Introduction of the Concept of Equation 533
Early Algebraization
A Global Dialogue from Multiple Perspectives
Cai, J.; Knuth, E. (Eds.)
2011, XXIV, 624 p., Hardcover
ISBN: 978-3-642-17734-7