Contents

Part I Normal Cardiac Rhythm and Pacemaker Activity

1 Cardiac Ion Channels and Heart Rate and Rhythm 3
Onkar Nath Tripathi

2 Ionic Basis of the Pacemaker Activity of SA Node Revealed by the Lead Potential Analysis ... 33
Yukiko Himeno, Chae Young Cha, and Akinori Noma

3 The “Funny” Pacemaker Current 59
Andrea Barbuti, Annalisa Bucchi, Raffaella Milanesi, Georgia Bottelli, Alessia Crespi, and Dario DiFrancesco

4 Novel Perspectives on Cardiac Pacemaker Regulation: Role of the Coupled Function of Sarcolemmal and Intracellular Proteins 83
Victor A. Maltsev, Tatiana M. Vinogradova, and Edward G. Lakatta

5 Pacemaker Activity of the SA Node: Insights from Dynamic-Clamp Experiments .. 101
Ronald Wilders, Antoni C.G. van Ginneken, and Arie O. Verkerk

6 Heart Rate Variability: Molecular Mechanisms and Clinical Implications .. 119
Kishore K. Deepak

7 Mechano-Electric Feedback in the Heart: Effects on Heart Rate and Rhythm .. 133
T. Alexander Quinn, Rebecca A. Bayliss, and Peter Kohl
Part II Modeling

8 A Historical Perspective on the Development of Models of Rhythm in the Heart ... 155
Penelope J. Noble and Denis Noble

9 Simulation of Cardiac Action Potentials .. 175
Jonathan D. Moreno and Colleen E. Clancy

Part III Cardiac Development and Anatomy

10 Development of Pacemaker Activity in Embryonic and Embryonic Stem Cell-Derived Cardiomyocytes 197
Huamin Liang, Michael Reppel, Ming Tang, and Jürgen Hescheler

11 Molecular Basis of the Electrical Activity of the Atrioventricular Junction and Purkinje Fibres 211
Halina Dobrzynski, Oliver Monfredi, Ian D. Greener, Andrew Atkinson, Shin Inada, Mary-Anne Taube, Joseph Yanni, Olga Fedorenko, Peter Molenaar, Robert H. Anderson, Igor R. Efimov, and Mark R. Boyett

12 Molecular Basis and Genetic Aspects of the Development of the Cardiac Chambers and Conduction System: Relevance to Heart Rhythm .. 231
Martijn L. Bakker, Vincent M. Christoffels, and Antoon F.M. Moorman

13 Role of the T-Tubules in the Response of Cardiac Ventricular Myocytes to Inotropic Interventions 255
C.H. Orchard, F. Brette, A. Chase, and M.R. Fowler

Part IV Mechanisms of Acquired Arrhythmia

14 An Overview of Spiral- and Scroll-Wave Dynamics in Mathematical Models for Cardiac Tissue 269
Rupamanjari Majumder, Alok Ranjan Nayak, and Rahul Pandit

15 Post-infarction Remodeling and Arrhythmogenesis: Molecular, Ionic, and Electrophysiological Substrates 283
Nabil El-Sherif
16 The Role of Intracellular Ca2+ in Arrhythmias in the Postmyocardial Infarction Heart ... 305
Wen Dun, Henk ter Keurs, and Penelope A. Boyden

17 Molecular and Biochemical Characteristics of the Intracellular Ca2+ Handling Proteins in the Heart ... 323
Yasser Abdellatif, Vijayan Elimban, Delfin Rodriguez-Leyva, and Naranjan S. Dhalla

18 Pharmacological Modulation and Clinical Implications of Sarcolemmal Ca2+-Handling Proteins in Heart Function 337
Yasser Abdellatif, Adriana Adameova, and Naranjan S. Dhalla

19 Calmodulin Kinase II Regulation of Heart Rhythm and Disease ... 351
Thomas J. Hund

20 MicroRNA and Pluripotent Stem Cell-Based Heart Therapies: The Electrophysiological Perspective 365
Ellen Poon, Deborah K. Lieu, and Ronald A. Li

Part V Mechanisms of Inherited Arrhythmia

21 Intracellular Calcium Handling and Inherited Arrhythmogenic Diseases ... 387
Nicola Monteforte, Carlo Napolitano, Raffaella Bloise, and Silvia G. Priori

22 Molecular Mechanisms of Voltage-Gated Na+ Channel Dysfunction in LQT3 Syndrome .. 409
Thomas Zimmer and Klaus Benndorf

23 The Short QT Syndrome .. 431
Jules C. Hancox, Mark J. McPate, Aziza El Harchi, Rona S. Duncan, Chris E. Dempsey, Harry J. Witchel, Ismail Adeniran, and Henggui Zhang

24 Adrenergic Regulation and Heritable Arrhythmias: Key Roles of the Slowly Activating Heart \textit{I}_{\text{KS}} Potassium Channel 451
David Y. Chung, Kevin J. Sampson, and Robert S. Kass
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Defects in Ankyrin-Based Protein Targeting Pathways in Human Arrhythmia</td>
<td>Hjalti Gudmundsson, Francis Jareczek, and Peter J. Mohler</td>
<td>Part VI</td>
</tr>
<tr>
<td>26</td>
<td>Genetically Modified Mice: Useful Models to Study Cause and Effect of Cardiac Arrhythmias?</td>
<td>Gregor Sachse, Martin Kruse, and Olaf Pongs</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Genetics of Atrial Fibrillation</td>
<td>Saagar Mahida, Michiel Rienstra, Moritz F. Sinner, Steven A. Lubitz,</td>
<td>Part VI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patrick T. Ellinor, and Stefan Kääb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and New Antiarrhythmic Agents Targeting Gap Junctions</td>
<td>Aida Salameh, Martin Kostelka, and Friedrich Wilhelm Mohr</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Possible Mechanisms of the Acute Ischemia-Induced Ventricular Arrhythmias: The Involvement of</td>
<td>Ágnes Végh and Rita Papp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gap Junctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Role of NCX1 and NHE1 in Ventricular Arrhythmia</td>
<td>András Tóth and András Varró</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>TRP Channels in Cardiac Arrhythmia: Their Role During Purinergic Activation Induced by Ischemia</td>
<td>Guy Vassort and Julio Alvarez</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Cardiac Aquaporins: Significance in Health and Disease</td>
<td>Tanya L. Butler and David S. Winlaw</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Ion Channels as New Drug Targets in Atrial Fibrillation</td>
<td>Ursula Ravens</td>
<td>Part VII</td>
</tr>
<tr>
<td>34</td>
<td>hERG1 Channel Blockers and Cardiac Arrhythmia</td>
<td>Michael C. Sanguinetti and Matthew Perry</td>
<td></td>
</tr>
</tbody>
</table>
35 Preclinical Drug Safety and Cardiac Ion Channel Screening 627
 Zhi Su and Gary Gintant

36 QT Prolongation Is a Poor Predictor of Proarrhythmia Liability:
 Beyond QT Prolongation! .. 639
 Luc M. Hondeghem

37 K Channel Openers as New Anti-arrhythmic Agents 655
 Nathalie Strutz-Seebohm and Guiscard Seebohm

Index ... 669
Heart Rate and Rhythm
Molecular Basis, Pharmacological Modulation and Clinical Implications
Tripathi, O.N.; Ravens, U.; Sanguinetti, M.C. (Eds.)
2011, XXII, 678 p., Hardcover
ISBN: 978-3-642-17574-9