Contents

Part I Microscopic Classical Theory

1 Survey of the Classical Theory .. 3
 1.1 Why is the Classical Theory Needed? 3
 1.2 Classical Electrodynamics: Macroscopic vs. Microscopic Theory .. 4
 1.3 Maxwell–Lorentz Electrodynamics .. 6
 1.4 The Standard Green Functions (Not Propagators) 7
 1.5 Evanescent Electromagnetic Fields 8
 1.6 Multipole Electrodynamics: A Richly Faceted Subject 11
 1.7 Local Electromagnetic Fields and Resonances 14
 1.8 Radiation Reaction in a Classical Perspective 15

2 Maxwell–Lorentz Electrodynamics in Space-Time 17
 2.1 The Maxwell–Lorentz Equations 17
 2.2 Vector and Scalar Potentials: Gauge Invariance 17
 2.3 The Implicit Solution of the Maxwell–Lorentz Equations 19
 2.4 The Newton–Lorentz Equation .. 22
 2.5 The Liénard–Wiechert Potentials and Fields 23
 2.6 Some Important Global Conservation Laws 28
 2.6.1 Global Energy Conservation 28
 2.6.2 Global Momentum Conservation 30
 2.6.3 Global Angular Momentum Conservation 32
 2.7 Some Local Conservation Laws 33
 2.7.1 Charge Conservation .. 33
 2.7.2 Local Energy Conservation: Microscopic Poynting Vector 34
 2.7.3 Local Momentum Conservation: Maxwell Stress Tensor 35
 2.7.4 Local Angular Momentum Conservation: Angular Momentum Flow 37
3 Electromagnetic Green Functions in Spectral Representation 39
 3.1 The Maxwell–Lorentz Equations in the Space–Frequency Domain ... 39
 3.2 Dyadic Green Functions in the Space–Frequency Domain 40
 3.2.1 Green Function for the Electric Field 40
 3.2.2 Green Function for the Magnetic Field 42
 3.3 Near-, Mid-, and Far-Field Parts of G and G^M 43
 3.3.1 Green Functions in Spherical Coordinates 43
 3.3.2 Far-Field Zone .. 44
 3.3.3 Mid-Field Terms ... 45
 3.3.4 Near-Field Zone ... 45
 3.4 Green Functions and Wave Equations in the Space–Frequency Domain 46
 3.5 Spectral Representation of the Electromagnetic Field from an Assembly of Moving Point Particles 48

4 Angular Spectrum Representation of the Green Functions and Fields .. 51
 4.1 Maxwell–Lorentz Equations in Mixed Representation 51
 4.2 Interlude: Monochromatic Plane-Wave Representation of the Maxwell–Lorentz Equations and Green Functions 53
 4.3 Green Functions in Mixed Representation 56
 4.3.1 Scalar Propagator, $g(Z; \mathbf{q}_\parallel, \omega)$ 56
 4.3.2 Dyadic Green Function, $G(Z; \mathbf{q}_\parallel, \omega)$ 58
 4.3.3 Dyadic Green function, $G^M(Z; \mathbf{q}_\parallel, \omega)$ 59
 4.4 Evanescent Electromagnetic Fields 60
 4.4.1 Electromagnetic Fields from a Sheet Source 60
 4.4.2 Transfer Matrices .. 61
 4.4.3 Mixed Current Density of a Moving Point Charge 62
 4.4.4 Cycle-Averaged Field Momentum Density 63
 4.5 Nonretarded ($c_0 \to \infty$) Electrodynamics in Vacuum 66
 4.6 Weyl Representation of the Green Functions 68
 4.6.1 Integrals Over Propagating and Evanescent Waves 68
 4.6.2 Integrals Over Generalized Inhomogeneous Waves 71

5 Multipole Electrodynamics .. 75
 5.1 Moment Expansion of Localized Current Density Distribution ... 75
 5.2 Electric and Magnetic Dipole Fields 79
 5.3 Electric Quadrupole Fields ... 81
 5.4 Transverse Electromagnetic Multipole Waves 83
 5.4.1 Spherical Scalar Waves 83
 5.4.2 Interlude: Angular Field Momentum Operator \hat{J} 85
 5.4.3 Electric and Magnetic Multipole Fields 87
 5.5 Microscopic Sources of Multipole Fields 89
 5.5.1 Microscopic Maxwell Equations with a New Electric-Field Variable ... 89
5.5.2 Interlude: Spherical Wave Expansion
of the Huygens Propagator ... 91
5.5.3 Multipole Coefficients ... 92
5.6 Mesoscopic Particle in a Prescribed External
Electromagnetic Field ... 94
5.6.1 Rate of Energy Transfer ... 94
5.6.2 Rate of Momentum Transfer 95
5.6.3 Angular Momentum Transfer 96

6 Electrodynamic Interaction Between Point
Dipoles: Local Fields .. 99
6.1 Multiple ED-Scattering to Infinite Order 99
6.2 ED-Scattering in a Born Series Approach 102
6.3 Local-Field Resonances ... 105
6.4 Two-Particle Interaction ... 106
6.5 Multiple MD- and EQ-Scattering 108

7 Radiation Reaction .. 111
7.1 The Nonrelativistic Abraham–Lorentz Equation of Motion 111
7.2 Damping Force on Electric and Magnetic Dipoles 116
7.2.1 Bare and Dressed Electric-Dipole Polarizability 116
7.2.2 Near-Zone Electric Green Function:
 Radiation Damping ... 118
7.2.3 Magnetic Radiation Damping 119
7.3 The Relativistic Lorentz–Dirac Equation of Motion 120
7.3.1 Manifestly Covariant Expression
 for the Energy–Momentum Radiation Rate 120
7.3.2 Rest-Mass Preserving Interactions 122
7.3.3 Abraham Four-Vector of Radiation Reaction 124
7.3.4 Lorentz–Dirac Equation
 on Integro-Differential Form 125
7.4 Self-Field Distortions ... 126

Part II Quantum Theory with Classical Fields

8 About Local-Field Theory Based on Electron–Photon
Wave Mechanics .. 131
8.1 Dynamical Variables and Redundancy: Rim Zone 132
8.2 Linear Response Theory in a Microscopic Perspective 133
8.3 On the Quantum Mechanical Calculation
 of Microscopic Conductivity Tensors 136
8.4 Coupled-Antenna Theory .. 137
8.5 Electromagnetic Propagators and Nonretarded
 Transverse Response ... 138
8.6 Photon Wave Mechanics: A Reinterpretation of Maxwells Theory ... 139
8.7 Near-Field and Gauge Photons: Photon Embryo 141
8.8 Photon Spin and Helicity .. 142
8.9 Superlocalization: One-Particle Position Operators 143
8.10 Transverse Photon Mass: Eikonal Theory for Photons 143

9 Transverse and Longitudinal Electrodynamics 145
9.1 Solenoidal and Irrotational Vector Fields 145
9.1.1 Helmholtz Theorem .. 145
9.1.2 Decomposition in Reciprocal Space 146
9.1.3 Transverse and Longitudinal Delta-Function Dyadics 147
9.2 Transverse and Longitudinal Parts of the Maxwell–Lorentz Equations ... 149
9.2.1 Field Equations in Direct Space 149
9.2.2 Rim Zone of Matter .. 151
9.2.3 Field Equations in Reciprocal Space 152
9.2.4 Potential Description .. 152
9.3 Role of the Longitudinal Electric Field 154
9.3.1 Instantaneous Coulomb Field 154
9.3.2 Coulomb Interaction and Self-Energy 155
9.3.3 Particle Momentum Associated with the Longitudinal Electric Field ... 157
9.3.4 Particle Angular Momentum Associated with the Longitudinal Electric Field .. 160
9.4 Dynamical State of the Coupled Field–Particle System 162

10 Linear Nonlocal Response Theory 163
10.1 Response Theory for Transverse External Excitations 163
10.1.1 Many-Body Constitutive Relation 163
10.1.2 Integral Equation for the Transverse Electric Field 165
10.1.3 Causal Response Tensors: Microscopic Conductivity 166
10.2 Causality and Dispersion Relations 167
10.2.1 Einstein Causality and Microcausality 167
10.2.2 Causality and Analyticity: Translational Invariance in Time ... 168
10.2.3 Frequency Dispersion and Hilbert Transforms 170
10.3 Local and Near-Local Microscopic Response Tensors 172
10.3.1 Spatial Correlation Range in Constitutive Equations 172
10.3.2 Local Dynamics with Hidden Nonlocality 174
10.4 Microscopic “Polarization” and “Magnetization” Dynamics 175
10.4.1 Generalized Polarization and Magnetization Concepts 175
10.4.2 Generalized Electric Displacement and Magnetic Vector Fields ... 177
10.4.3 Central Field Equations 178
10.5 Response Theory Based on Generalized Permittivity and Permeability Tensors for Transverse Dynamics
10.5.1 Flexibility ... 179
10.5.2 Response Theory Based on the Choice
\[\mu_\tau(r, r', t, t') = U \delta(r - r')\delta(t - t') \] 180
10.5.3 Response Theory Based on the Choice
\[D_\tau(r, t) = \epsilon_0 E^{\text{ext}}(r, t) \] 181
10.6 Response to External Longitudinal Fields 182
10.7 The General Constitutive Relation 183
10.8 Response Tensors for Media with Finite and Infinitesimal Translational Invariance in Space 184
10.8.1 Lattice Periodicity .. 184
10.8.2 Slowly Varying External Fields 185

11 Density Matrix Formalism: Hamilton and Current Density Operators – Gauge Invariance ... 187
11.1 Density Matrix Operator ... 187
11.1.1 Pure State ... 187
11.1.2 Statistical Mixture of States 190
11.2 The Liouville Equation ... 193
11.3 The Configuration Space Representation 195
11.4 Hamilton Operator in Minimal Coupling Form 197
11.4.1 The Relativistic Standard Hamiltonian 197
11.4.2 Pauli and Nonrelativistic Hamiltonians 199
11.4.3 Canonical Quantization 200
11.5 Orbital Probability Current Density 204
11.5.1 Probability Current Density in Wave Function Space 204
11.5.2 Para- and Diamagnetic Current Densities 205
11.5.3 Transition Current Density 206
11.5.4 Orbital Current Density Operator 207
11.6 Gauge Invariance in Quantum Mechanics 209
11.6.1 Transformation of the Mechanical Momentum Operator ... 209
11.6.2 Unitary Transformation of the State Vector 210
11.6.3 Form Invariance of the Schrödinger Equation 212
11.6.4 Electromagnetic Forces and Local Phase Invariance 214

12 Quantum Theory of the Generalized Nonlocal Linear Response .. 217
12.1 Mean Value of the Orbital Current Density Operator in a Weak External Electromagnetic Field 217
12.1.1 Gauge Choices for the External and Induced Potentials: Interaction Hamiltonian 217
12.1.2 Iterative Solution of the Liouville Equation 220
12.1.3 Linearized Orbital Current Density 221
12.1.4 Calculation of the Mean Current Density in the \hat{H}_0-Basis .. 222
12.2 The Nonlocal Linear Response Tensor ... 224
12.2.1 One-Electron Approximation .. 224
12.2.2 Many-Body Approach .. 227
12.3 Tensor Product Structure of the Orbital Response Tensor 229
12.4 Gauge Invariance of the Linearized Response 232
12.5 Remarks on the Low- and High-Frequency Responses 236

13 Microscopic Ewald–Oseen Extinction Theorem: Coupled-Antenna Theory .. 239
13.1 Extinction Theorem for Transverse Dynamics 239
13.1.1 Integral Relation Between Field and Current Density 239
13.1.2 Ewald–Oseen Extinction Theorem 242
13.2 Integral Equations ... 244
13.3 Coupled-Antenna Theory ... 245
13.3.1 Matrix Equation Problem for the Local Field 245
13.3.2 Local-Field Resonances .. 249
13.4 Two-Level System: Single Antenna Dynamics 251

14 Transverse and Covariant Electromagnetic Propagators: Principal Volume and Self-Field Dyadics 255
14.1 Transverse Propagator for the Electric Field 255
14.1.1 Spectral Representation .. 255
14.1.2 Genuine Transversality ... 257
14.1.3 Space–Time Form: Causality and Space-Like Near-Field Coupling .. 258
14.2 Eigenvector Expansion of Propagators 263
14.2.1 Distribution Theory ... 263
14.2.2 Transverse Eigenvector Expansion over a Finite Domain 264
14.2.3 Plane-Wave Eigenvector Expansion Over an Infinite Domain 266
14.3 Contraction Geometry and Transverse Self-Field Dynamics .. 267
14.3.1 Volume and Surface Integral Contributions to the Transverse Electric Field ... 268
14.3.2 The Connection Between the Volume Integral and the Exterior Solution for the Transverse Field 273
14.3.3 Self-Field Dyadic ... 274
14.4 Propagator Plus Self-Field Electrodynamics in the Rim Zone and Source Region 276
14.5 Near-Field Electrodynamics in Spherical Contraction Geometry .. 279
14.6 Relativistic Covariance of the Huygens Propagator 280
15 Photon Wave Mechanics: Complex Field Theory ..283
 15.1 Wave Mechanics and the Einstein–de Broglie Relations283
 15.2 Landau–Peierls Theory ...285
 15.3 Interlude: Complex Analytical Signals ...287
 15.4 Complex Field Theory in the Momentum–Time Domain290
 15.4.1 Photon Helicity Unit Vectors ...290
 15.4.2 Photon Helicity Eigenstates: Wave Function and Wave Equations292
 15.4.3 Photon Spinor Description ..293
 15.4.4 Quantum Mechanical Mean Values of the Photon Energy and Momentum295
 15.5 Complex Field Theory in the Space–Time Domain297
 15.5.1 Cartesian Photon Spin Operator: Helicity Operator297
 15.5.2 The Nonlocal Hamilton Operator of the Photon300
 15.6 Photon Probability Current Density and the Associated Operator302
 15.7 The Nonlocal Relation Between Field Vectors and Photon Wave Function ...304

16 Photon Wave Mechanics: Energy Wave Function and Four-Potential Theories ...307
 16.1 Photon Energy Wave Function Formalism307
 16.1.1 Riemann–Silberstein Approach to Classical Electromagnetics in Free Space307
 16.1.2 Dynamical Equation for the Photon Energy Wave Function309
 16.1.3 Quantum Mechanical Mean Value of the Photon Energy–Momentum Operator in Reciprocal Space ...312
 16.1.4 Lorentz-Invariant Integration on the Light Cone315
 16.2 Relation Between the Energy Wave Function and Complex Field Formalisms in Direct Space317
 16.3 Wave Mechanics of Longitudinal and Scalar Photons: Standard Theory ...319
 16.3.1 Complex Field Theory in Terms of the Transverse Vector Potential319
 16.3.2 Longitudinal and Scalar Photon Wave Functions, and Their Related Wave Equations320
 16.3.3 Identity of the Longitudinal and Scalar Photons322
 16.3.4 Quantum Mechanical Mean Values of the Longitudinal and Scalar Photon Energies323
 16.4 Wave Mechanics of Gauge and Near-Field Photons324
 16.4.1 Transverse Photon Schrödinger-Like Equations in Direct and Reciprocal Space325
 16.4.2 Longitudinal and Scalar Photons Once More326
16.4.3 Gauge and Near-Field Photons .. 327
16.4.4 Gauge Transformations Within the Lorenz Gauge 328
16.4.5 Elimination of the Gauge Photon 329

17 Photon Angular Momentum .. 333
17.1 Bodily Rotation of Scalar and Vector Fields 334
17.2 Orbital and Spin Parts of the Photon Angular Momentum 337
 17.2.1 Division of the Angular Momentum
 of the Transverse Electromagnetic Field 337
 17.2.2 Quantum Mechanical Mean Values
 of the Orbital and Spin Angular Momenta
 in the Complex Field Theory 339
 17.2.3 Quantum Mechanical Mean Values
 of the Orbital and Spin Angular Momenta
 in the Energy Wave Function Formalism 341
17.3 More on the Photon Spin and Helicity 342
 17.3.1 Are \hat{L} and \hat{S} Separate Observables
 for a Photon? ... 342
 17.3.2 Quantum Mechanical Mean Value
 of the Cartesian Photon Spin Operator 343
 17.3.3 Projected Photon Spin Operator 345
 17.3.4 Eigenvectors and Eigenvalues of the
 Photon Helicity Operator 346

18 Photon Emission from Micro- and Mesoscopic Sources:
 Near-Field Aspects .. 349
18.1 Microscopic Electrodynamics Based
 on D- and H-Fields .. 350
 18.1.1 New Microscopic Field Equations 350
 18.1.2 Duality Between Old and New Transverse
 Electrodynamics: New Wave Equations 351
18.2 The Photon Embryo Concept 352
 18.2.1 Dynamical Photon Wave Function Variables 352
 18.2.2 Dynamical Equations for the Photon
 Wave Function Variables 354
 18.2.3 Photon Embryo in Momentum Space 355
18.3 One-Photon Sources .. 357
18.4 Propagator Description of Photon Embryo
 in Space–Time .. 359
 18.4.1 Remarks on the Classical Source Term $W(r, t)$ 359
 18.4.2 Propagator Solutions of the Wave Equations
 for $D(r, t)$ and $H(r, t)$ 359
 18.4.3 Propagation of Embryo State 360
19 Eikonal Theory for Transverse Photons and Massive Particles of Zero Spin ...365
 19.1 Foundations of Geometrical Optics ..366
 19.1.1 Macroscopic Maxwell Equations ...366
 19.1.2 Eikonal Equation and Energy Transport367
 19.2 Massive Transverse Photon ..370
 19.2.1 Microscopic Transverse Electrodynamics at High Frequencies370
 19.2.2 Quantum Mechanical Photon Wave Equation in a Homogeneous Medium372
 19.2.3 Energy–Momentum Relation: Mass of Transverse Photon373
 19.2.4 Photon Mass in the Energy Wave Function Formalism374
 19.3 Photon Eikonal Gradient: Local Particle Momentum376
 19.3.1 Photon Eikonal Equation ..376
 19.3.2 Local Photon Momentum ...378
 19.4 Hamilton–Jacobi Formulation of Classical Mechanics380
 19.4.1 The Hamilton Equations and Their Derivation from a Variational Principle381
 19.4.2 A Particular Canonical Transformation383
 19.4.3 Hamilton–Jacobi Equation for Hamilton’s Principal Function384
 19.4.4 Hamilton–Jacobi Equation for Hamilton’s Characteristic Function385
 19.5 Eikonal Theory of Charged Particles in Quantum Mechanics386
 19.5.1 Nonrelativistic Hamilton–Jacobi Equation386
 19.5.2 Quantum Potential and Probability Fluid Flow389
 19.5.3 Relativistic Hamilton–Jacobi Equation: Particle of Zero Spin390

20 Spin-1/2 Currents: Spatial Photon Localization in Emission from a Pure Spin Transition ..395
 20.1 Spin-1/2 Current Density ...395
 20.1.1 Dirac Equation in Minimal Coupling Form396
 20.1.2 Fully Relativistic Dirac Current Density398
 20.1.3 Weakly Relativistic Pauli Spin Current Density399
 20.2 Spin Source for Photons: Absence of the Rim Zone403
 20.3 Photon Emission from Spin-1/2 Transitions406
 20.3.1 Electromagnetic Far Field ...406
 20.3.2 Emission from an Isotropic Microscopic Source407
21 One-Particle Position Operators and Spatial Localization411
 21.1 Nonrelativistic Particle ..411
 21.2 Massive Relativistic Particle of Zero Spin412
 21.2.1 Position Operator ...412
 21.2.2 Eigenstates of the Position Operator:
 Localization in Configuration Space413
 21.3 Massless Spin-One Particle (Photon)417
 21.3.1 Transverse Eigenstates in Momentum Space417
 21.3.2 Dyadic Photon Position Operator418
 21.3.3 The Photon Position Operator Problem
 in Configuration Space419

Part III Quantum Electrodynamic Theory

22 Near Fields and QED ..423
 22.1 The Zoo of Photons ..423
 22.1.1 One-Photon Wave Packets425
 22.2 Near-Field Commutators ...425
 22.3 Maxwell–Lorentz Operator Equations: Coulomb
 and Poincaré Gauges ..426
 22.4 Covariant Field Propagators ...428
 22.5 Photon Emission from Atoms and Mesoscopic Objects429
 22.6 Virtual Transverse Photon Exchange in Near-Field
 Electrodynamics ..432
 22.7 Exchange of Scalar Photons ...433
 22.8 Coherent States of Evanescent Fields433

23 The Route to the Maxwell–Lorentz Operator Equations
 in the Coulomb Gauge ...435
 23.1 Plane-Wave Quantization of the Transverse
 Electromagnetic Field ..435
 23.1.1 The Classical Field Vectors435
 23.1.2 The Classical Field Energy and Momentum
 in Free Space ..438
 23.1.3 The Classical Spin of the Free Field440
 23.1.4 Quantization Scheme for the Radiation Field:
 Transverse Field Observables ..442
 23.1.5 Hamilton, Momentum and Spin Operators
 for the Transverse Electromagnetic Field444
 23.1.6 Monochromatic Plane-Wave Photons: A Brief Review445
 23.2.1 State Space ..448
 23.2.2 Total Nonrelativistic Hamiltonian
 in the Coulomb Gauge ..448
 23.2.3 The Schrödinger Picture449
23.2.4 The Heisenberg Picture ... 450
23.2.5 The Interaction Picture ... 451
23.3 The Quantized Newton–Lorentz Equation 452
23.4 The Quantized Maxwell–Lorentz Equations
in the Coulomb Gauge ... 455
23.4.1 Equation of Motion for the Annihilation
Operator, \(\hat{a}_{qs} \) ... 455
23.4.2 Equations of Motions for the Transverse
Electric (\(\hat{E}_T \)) and Magnetic (\(\hat{B} \)) Field Operators 458
23.4.3 Longitudinal Electric Field Operator 460

24 Field Commutators and Integral Representation
of Various Covariant Propagators 461
24.1 The Jordan–Pauli and Feynman Scalar Propagators 462
24.2 Free-Field Commutators for Fields Taken at Different
Space–Time Points .. 463
24.3 Field Commutators in the Presence of Field–Matter Interaction . 468
24.3.1 Equal-Time Commutators 468
24.3.2 Weighted Average Values of Fields
and Commutators .. 469
24.3.3 Quantum Mechanical Mean Value
and Variance of the Mean Field 470
24.4 Contour Integral Representations of Covariant Scalar
Propagators ... 472
24.4.1 The Jordan–Pauli Propagator 472
24.4.2 The Feynman Propagator 473

25 Electrodynamics in the Poincaré Gauge 477
25.1 The Poincaré Gauge ... 478
25.2 A Specific Choice for the Generalized Polarization
and Magnetization ... 480
25.2.1 Polarization Field .. 480
25.2.2 Magnetization Field ... 482
25.3 Lagrangians in the Coulomb and Poincaré Gauges 484
25.3.1 Nonrelativistic Standard Lagrangian
and Its Gauge Transformation 484
25.3.2 The Power–Zienau–Woolley Transformation 485
25.3.3 On the Elimination of the Redundancy
from the Standard Lagrangian 486
25.3.4 Coulomb Lagrangian: Regrouping of Parts 487
25.3.5 Poincaré Interaction Lagrangian 488
25.3.6 Multipole Interaction Lagrangian 489
25.4 Conjugate Momenta: Coulomb and Poincaré Hamiltonians 490
25.4.1 Conjugate Particle Momentum 490
25.4.2 Conjugate Field Momentum 490
25.4.3 Hamiltonians ... 491
25.5 Quantum Description in the Poincaré Gauge

25.5.1 Quantum Representations Related by a Unitary Transformation: A Brief Review

25.5.2 The Unitary Transformation Relating the Quantum Descriptions in the Coulomb and Poincaré Gauges

25.5.3 Transformation of Various Physical Quantities

25.5.4 Canonical Quantization: Hamilton Operator

26 Photon-Field Operators: Wave-Packet Photons

26.1 Free Photon-Field Operators

26.2 Single-Photon States: Relation to Photon Wave Mechanics

26.3 Local and Global Bilinear Operators: Nonstationary One-Photon States

26.4 Wave-Packet Photon Operators and States

26.5 Maxwell–Lorentz Operator Equations in the Poincaré Gauge

26.6 Matter-Coupled Photon-Field Operators

26.7 Photon Embryo in Spontaneous Emission

27 Photon Emission From Atoms: Elements of the Nonrelativistic QED Description

27.1 Integral Relations Between Field and Particle Operators

27.1.1 On the Nonrelativistic Lamb Shift and Spontaneous Emission

27.1.2 Propagator Connection Between the Photon-Field and Source-Particle Operators

27.2 Field Radiation from Single-Particle Source

27.2.1 Second-Quantization of Source Current Density: Flip Operators

27.2.2 The Retarded Relation Between Field and Flip Operators

27.2.3 Single-Electron Spontaneous Emission: Neglect of Diamagnetism

27.3 The Electric Dipole Hamiltonian and the Associated Operator

27.3.1 Long-Wavelength Approximation of the Classical Poincaré Hamiltonian

27.3.2 Long-Wavelength Unitary Transformation of the Coulomb Hamilton Operator

27.4 Two-Level Atom

27.4.1 Raising and Lowering Operators

27.4.2 Pauli Operators

27.4.3 Electron-Field Operators

27.4.4 Electric-Dipole Hamiltonian
27.5 Dynamical Equations for a Coupled Two-Level Atom Plus Field System ... 537
27.5.1 Heisenberg Equation of Motion for the Atomic Flip Operator, \(\hat{b} \) .. 537
27.5.2 Heisenberg Equation of Motion for the Field Annihilation Operator, \(\hat{a}_{qs} \) 538
27.6 Spontaneous Emission and Lamb Shift: Heuristic Approach 539
27.6.1 Rotating-Wave Approximation .. 539
27.6.2 Markov Approximation 540
27.6.3 The Spontaneous Decay Rate 542
27.6.4 The Lamb-Shift Parameter 544
27.6.5 The Radiated Transverse Field 546
27.6.6 The \(\{ \hat{b}, \hat{b}^\dagger \} \)-Anticommutator Problem....................... 549
27.6.7 Relation Between the Spontaneous Decay Rate and the Transverse Propagator 550

28 Particle–Particle Interaction by Transverse Photon Exchange553
28.1 Multipole Expansion of the Coulomb Interaction Energy 554
28.2 Perturbation by an Effective Electronic Hamiltonian 556
28.3 Single-Photon Exchange Between Two Charged Particles 560
28.3.1 Qualitative Analysis of the Effective Hamiltonian to Second Order .. 561
28.3.2 Delay and Magnetic Corrections to the Coulomb Interaction .. 566
28.3.3 Momentum Exchange .. 569
28.4 Van der Waals Interaction Between Two Neutral Particles 571
28.4.1 Interaction from the Power–Zienau–Woolley Point of View .. 571
28.4.2 Exchange of Virtual Transverse Photons 574
28.5 Casimir Effect: Particle–Surface Interaction 578
28.6 Remarks on the Casimir–Polder Effect 581

29 Photons in a Manifestly Lorentz-Covariant Theory583
29.1 Covariant Formulation of Classical Free-Field Dynamics 584
29.1.1 Covariant Notation ... 584
29.1.2 The Free Maxwell Equations in Covariant Form 585
29.1.3 Lagrange Equations for the Free Field: Standard Approach .. 586
29.1.4 Modified Field Lagrangian Density 587
29.2 Plane-Wave Expansion of the Four-Potential 589
29.2.1 Four-Component Polarization Vectors 589
29.2.2 Gauge, Near-Field, and Transverse Four-Component Potentials .. 590
29.2.3 Lorenz Condition: Gauge Arbitrariness 592
29.2.4 Electromagnetic Field Hamiltonian 593
29.3 Covariant Field Quantization .. 595
 29.3.1 Hamilton Operator and Commutator Relations 595
 29.3.2 Scalar Photons: The Problem of Negative Norms 597
 29.3.3 Gupta–Bleuler–Lorenz Condition 598
 29.3.4 Near-Field and Gauge Photon Quanta:
 Commutators and Hamilton Operator 600
29.4 Covariant Quantization with an Indefinite Metric 602
 29.4.1 New Scalar Product and New Adjoining
 Operator, $\tilde{\mathcal{O}}$ 602
 29.4.2 Choice of New Metric 603
 29.4.3 Near-Field and Gauge Photons in the New Metric 605
29.5 $\hat{A}_\mu(x)$-Commutators and the Feynman Photon Propagator 607
 29.5.1 Covariant Commutation Relations 607
 29.5.2 Equal-Time Commutation Relations 608
 29.5.3 The Feynman Photon Propagator 609
30 Matter-Attached Quantized Fields 611
 30.1 Analysis of the Covariant Photon Propagator 612
 30.1.1 Combined Exchange of Longitudinal
 and Scalar Photons 612
 30.1.2 Near-Field and Gauge Photon Exchange 615
 30.2 Field–Particle Interaction in Covariant Notation 617
 30.2.1 Interaction Lagrangian Density and Wave Equation 617
 30.2.2 Retarded and Advanced Propagators:
 In- and Out-States 618
 30.3 Interaction Between Two Fixed Charges: Exchange
 of Scalar Photons 621
 30.3.1 Prescribed Particle Dynamics: Hamiltonian
 for Field Evolution 621
 30.3.2 Energy Shift of the Ground State of the Field 622
 30.3.3 Reinterpretation of Coulomb’s Law 625
 30.4 Coulomb Interaction: The Near-Field and Gauge Photon Picture .. 627
 30.5 Classical Potentials Generated by a Prescribed Sheet Source ... 629
 30.5.1 Sheet Current Density 629
 30.5.2 Longitudinal and Scalar Parts of the Classical
 Four-Potential ... 631
 30.5.3 Quasi-Static Regime 635
 30.5.4 Sheet Rim Zone 636
 30.6 Quantum Field Radiated by a Classical Source 636
 30.6.1 Current Density Without Quantum Fluctuations 636
 30.6.2 Heisenberg Equations of Motion
 for the Annihilation Operators $\{a_r(q; t)\}$ 637
Quantum Theory of Near-Field Electrodynamics
Keller, O.
2011, XXVI, 670 p., Hardcover
ISBN: 978-3-642-17409-4