Contents

Part I Physics of High Speed Lasers

1 Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity 3
 1.1 The “Local” Rate Equations 3
 1.2 Spatially Averaged Rate Equations and their Range of Validity 5

2 Basic “Small-Signal” Modulation Response 11

3 Distortions in Direct Modulation of Laser Diodes 19
 3.1 Perturbation Analytic Prediction of Fundamental Distortions in Directly Modulated Laser Diodes 19
 3.2 Intermodulation Distortion 22

4 Direct Modulation Beyond X-Band by Operation at High Optical Power Density 29

5 Improvement in Direct-Modulation Speed by Enhanced Differential Optical Gain and Quantum Confinement 35
 5.1 Demonstration of the Explicit Dependence of Direct-Modulation Bandwidth on Differential Gain by Low-Temperature Operation 35
 5.1.1 Direct-Modulation Results 35
 5.1.2 Parasitic-Free Photo Mixing Modulation Experiment 38
 5.2 Attainment of High-Modulation Bandwidths Through Quantum-Confined Materials 40

6 Dynamic Longitudinal Mode Spectral Behavior of Laser Diodes Under Direct High-Frequency Modulation 45
 6.1 Introduction 45
 6.2 Experimental Observations 46
 6.3 Time Evolution Equations for Fractional Modal Intensities 50
 6.4 A Two-Mode Laser 51
6.5 Solution to the Many-Mode Problem .. 55
 6.5.1 An Approximate Analytic Solution
 of \(\alpha_0 \sum_i \frac{1}{1+c_i^2} = 1 \) .. 58

6.6 Lasing Spectrum Under CW High-Frequency Microwave Modulation .. 59

6.7 Dynamic Wavelength “Chirping” Under Direct Modulation 61

6.8 Summary and Conclusions .. 62

7 Signal-Induced Noise in Fiber Links 65
 7.1 Introduction .. 65
 7.2 Measurements ... 67
 7.3 Analysis and Comparison With Measurements 72
 7.3.1 Mode-Partition Noise and Noise Transposition
 in Fiber Links Using Multimode Lasers 73
 7.3.2 Transposed Interferometric Noise in Fiber
 Links Using Single-Frequency Lasers 78
 7.4 Mode-Partition Noise in an Almost Single-Mode Laser 82
 7.5 Conclusion .. 83

Part II Direct Modulation of Semiconductor Lasers
Beyond Relaxation Oscillation

8 Illustration of Resonant Modulation 87

9 Resonant Modulation of Monolithic Laser Diodes
 at Millimeter-Wave Frequencies 93
 9.1 Active Mode-Locking .. 95
 9.2 Passive Mode-Locking ... 97

10 Performance of Resonant Modulation
 in the Millimeter-Wave Frequency Range:
 Multi-Subcarrier Modulation 101

11 Resonant Modulation of Single-Contact Lasers 107

Part III Fiber Transmission Effects, System Perspectives
and Innovative Approach to Broadband mm-Wave Subcarrier
Optical Signals

12 Fiber Chromatic Dispersion Effects of Broadband
 mm-Wave Subcarrier Optical Signals and Its Elimination 115
 12.1 Effects on Multichannel Digital Millimeter-Wave Transmission ... 115
 12.2 Elimination of Fiber Chromatic Dispersion Penalty
 on 1,550 nm Millimeter-Wave Optical Transmission 120
13 Transmission Demonstrations ..125
 13.1 1550-nm Transmission of Digitally Modulated
 28-GHz Subcarriers Over 77 km of Non-Dispersion
 Shifted Fiber ..125
 13.2 39 GHz Fiber-Wireless Transmission of Broadband
 Multi-Channel Compressed Digital Video130

14 Application of Linear Fiber Links to Wireless Signal
Distribution: A High-level System Perspective135

15 Improvements in Baseband Fiber Optic Transmission
by Superposition of High-Frequency Microwave Modulation141
 15.1 Introduction ..141
 15.2 Interferometric Noise ..142
 15.2.1 Superimposed High-Frequency Modulation:
 External Phase Modulation144
 15.2.2 Directly Modulated Laser Diode147
 15.2.3 Superimposed Modulation With Band-Pass
 Gaussian Noise ..149
 15.3 Multimode Fiber: Modal Noise152
 15.4 Conclusion ..153

16 Millimeter-Wave Signal Transport Over Optical
Fiber Links by “Feed-Forward Modulation”155
 16.1 Principle of “Feed-Forward Modulation” for mm-Wave
 Signal Transport Over an Optical Carrier155
 16.2 Demonstration of “Feed-Forward Modulation”
 for Optical Transmission of Digitally Modulated
 mm-Wave Subcarrier ...161

17 Frequency Planning for Minimal Intermodulation Distortion165
 17.1 Introduction ..165
 17.2 Algorithms for Single-Link Frequency Planning166
 17.2.1 Babcock Spacing166
 17.2.2 Okinaka’s Algorithm168
 17.3 Multi-Link Frequency Planning Algorithm170
 17.3.1 Modified Okinaka Algorithm for Multi-Link
 Frequency Planning171
 17.3.2 Measurements ..173
 17.4 Discussion and Conclusion176

18 Erbium Fiber Amplifiers in Linear
Lightwave Transmission ..177
 18.1 Introduction ..177
 18.2 Distortion Characteristics178
 18.2.1 EDFA Distortion Model178
 18.2.2 Experimental Results181
18.2.3 Comparisons Between Distortions in Laser Diode with EDFA ... 187
18.3 CNR Optimization .. 188
 18.3.1 Operation Point .. 189
 18.3.2 Fan-Out and Fiber Loss .. 192
 18.3.3 CNR Versus Length of EDFA ... 193
18.4 Discussions and Conclusions ... 195

Part IV Appendices

A Notes on RF Link Metrics ... 199
 A.1 Notes on Relation Between Distortion Products, Noise, Spur (Spurious)-Free Dynamic Range (SFDR) 199
 A.2 Notes on Intermodulation Distortion in a Multichannel Subcarrier Transmission System: CTB and CSO 201
 A.2.1 Composite Triple Beat (CTB) .. 201
 A.2.2 Composite Second-Order Intermodulation (CSO) Distortion .. 203
 A.3 Graphical Illustrations of RF Signals 204

B Ultrahigh Frequency Photodiodes and Receivers 207
 B.1 Ultrahigh Speed PIN Photodiodes 207
 B.2 Resonant Receivers .. 211

C High Frequency Optical Modulators .. 213
 C.1 Mach Zehnder Interferometric Optical Modulator 214
 C.2 Electroabsorption Optical Modulator 215

D Modulation Response of Superluminescent Lasers 219
 D.1 Introduction .. 219
 D.2 The Small Signal Superluminescent Equations and Numerical Results .. 220
 D.3 Effect of a Small but Finite Mirror Reflectivity 224

E Broadband Microwave Fiber-Optic Links With RF Phase Control for Phased-Array Antennas ... 229

F Small Signal Traveling Wave Rate Equations for Erbium-Doped Fiber Amplifiers .. 235

G Applications of High Frequency Linear Fiber-Optic Links in Defense Systems .. 237
 G.1 Electronic Counter Measure: Aerial Towed Fiber-Optic Decoy 237
 G.2 Nuclear Test Diagnostic Instrumentation 238

References .. 241

Index ... 253
Ultra-high Frequency Linear Fiber Optic Systems
Lau, K.Y.
2011, XXIV, 256 p., Hardcover
ISBN: 978-3-642-16457-6