Contents

I. Seismic Electric Signals

1. **Introduction to Seismic Electric Signals**
 - 1.1 Data collection and the telemetric network
 - 1.2 Distinction of SES from noise
 - 1.2.1 Distinction of SES from magnetotelluric (MT) changes
 - 1.2.2 Distinction of SES from noise of electrochemical origin
 - 1.2.3 Distinction of SES from “artificial” (man-made) noise. The $\Delta V/L$ criterion
 - 1.3 SES physical properties
 - 1.3.1 Lead time of SES. Other electrical precursors
 - 1.3.2 Interrelation between SES amplitude and EQ magnitude
 - 1.3.3 SES polarity and the ratio of the two SES components
 - 1.3.4 SES sensitive sites. Selectivity effect
 - 1.3.5 Determination of the epicenter and magnitude of an impending mainshock from the SES data
 - 1.3.6 Magnetic field variations associated with SES
 - 1.3.7 Magnetic field variations associated with the precursory short-duration electric pulses
 - 1.4 Scale invariance of SES activities and their associated magnetic field variations
 - 1.4.1 Long-Range Correlations. Background
 - 1.4.2 Detrended fluctuation analysis (DFA)
 - 1.4.3 DFA of long duration SES activities
 - 1.4.4 DFA of the magnetic field variations that accompany SES activities
 - 1.5 Criticality, complexity and fractals. An introduction
 - 1.5.1 Introductory note on fractal dimension and self-similarity.
 - Fractional Brownian motion and fractional Gaussian noise
 - 1.5.2 Critical phenomena and fractality
 - 1.5.3 Non-equilibrium critical dynamics. The scaling hypothesis
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.4</td>
<td>Current aspects on the non-equilibrium driven dynamics. Dynamic phase transitions</td>
<td>37</td>
</tr>
<tr>
<td>1.6</td>
<td>Physical mechanisms suggested for the generation of SES</td>
<td>38</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Introduction. Views on seismogenesis and classes of SES generation models</td>
<td>38</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Pressure (stress) stimulated currents (PSC) model</td>
<td>40</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Charged dislocation mechanism</td>
<td>47</td>
</tr>
<tr>
<td>1.6.4</td>
<td>The deformation-induced charge flow mechanism</td>
<td>52</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Teisseyre’s model on the precursory electric signals generation related with dislocation dynamics</td>
<td>55</td>
</tr>
<tr>
<td>1.6.6</td>
<td>The peroxy defects model</td>
<td>55</td>
</tr>
<tr>
<td>1.6.7</td>
<td>The model of the large-scale motion of lattice defects</td>
<td>56</td>
</tr>
<tr>
<td>1.6.8</td>
<td>SES generation mechanisms based on electrokinetic phenomena</td>
<td>57</td>
</tr>
<tr>
<td>1.6.9</td>
<td>SES generation mechanisms when assuming the earthquake rupture as critical point</td>
<td>64</td>
</tr>
<tr>
<td>1.6.10</td>
<td>Other SES generation mechanisms</td>
<td>65</td>
</tr>
<tr>
<td>1.7</td>
<td>Explanation of the selectivity effect and other SES properties</td>
<td>66</td>
</tr>
<tr>
<td>1.7.1</td>
<td>The model for the explanation of the selectivity effect</td>
<td>66</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Analytical studies related to the explanation of the SES properties</td>
<td>69</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Direction of the maximum principal stress with respect to the neighboring earthquake fault</td>
<td>75</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Explanation of the SES properties based on analytical studies</td>
<td>76</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Electric field numerical calculations explaining the selectivity effect</td>
<td>79</td>
</tr>
<tr>
<td>1.7.6</td>
<td>Magnetic field calculations</td>
<td>85</td>
</tr>
<tr>
<td>1.7.7</td>
<td>The physical background of the $\Delta V/L$ criterion to distinguish SES from noise</td>
<td>89</td>
</tr>
<tr>
<td>1.7.8</td>
<td>Explanation of the difference between SES polarization and MT polarization</td>
<td>95</td>
</tr>
<tr>
<td>1.8</td>
<td>Transmission of electric signals in dielectric media: time- and frequency-dependence</td>
<td>97</td>
</tr>
<tr>
<td>1.8.1</td>
<td>The propagation regime and the diffusion regime of electromagnetic fields. Isotropic and homogeneous medium</td>
<td>97</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Electric field from a dipole current source lying close to a conductive path. Frequency dependence</td>
<td>100</td>
</tr>
<tr>
<td>1.8.3</td>
<td>The electric signal recorded at a remote site. Time domain</td>
<td>101</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Discussion on the explanation of the SES detectability and selectivity</td>
<td>103</td>
</tr>
<tr>
<td>1.8.5</td>
<td>Discussion on the time-difference between the SES electric field variation and the associated magnetic field recordings</td>
<td>105</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>109</td>
</tr>
</tbody>
</table>
II. Natural Time Foundations

2. Natural Time. Background .. 119
 2.1 Introduction to natural time 119
 2.1.1 Time and not space poses the greatest challenge to science 120
 2.1.2 Definition of natural time 121
 2.1.3 The “uniform” distribution 122
 2.2 Time reversal and natural time 123
 2.2.1 Interconnection of the average value of natural time with the
effect of a small linear trend on a “uniform” distribution 124
 2.2.2 Quantification of the long-range dependence from the
fluctuations of the average value of natural time under time
reversal .. 124
 2.3 Characteristic function. Mathematical background 128
 2.3.1 Definition of the characteristic function 128
 2.3.2 Properties of the characteristic function 129
 2.4 The normalized power spectrum \(\Pi(\omega) \) or \(\Pi(\phi) \)
and the variance \(\kappa_1 \) of natural time 130
 2.4.1 The normalized power spectrum for the “uniform” distribution . 133
 2.4.2 The normalized power spectrum of seismic electric signals ... 134
 2.5 Distinction of the origins of self-similarity 138
 2.5.1 The two origins of self-similarity. Background 139
 2.5.2 The expectation value of \(\kappa_1 \) when a (natural) time window of
length \(l \) is sliding through a time series 139
 2.5.3 The case when the increments of the time series of \(Q_k \)
are positive i.i.d. random variables of finite variance 143
 2.5.4 The value of \(\kappa_1 \) when a (natural) time window is sliding through
power law distributed energy bursts 143
 2.5.5 Conclusions .. 146
 2.6 Origin of the optimality of the natural time representation 146
 2.7 Is time continuous? .. 150
 2.7.1 Differences between natural time and conventional time on the
basis of set theory ... 150
 2.7.2 Proof of the cardinality of the set of the values of natural time .. 153
 2.7.3 Is natural time compatible with Schrödinger’s point of view? ... 153
 2.7.4 Conclusions .. 154
References .. 155

3. Entropy in Natural Time ... 159
 3.1 The entropy in dynamical systems and the advantages of its use 159
 3.2 Entropy in natural time. Definition 161
 3.3 Properties of the entropy in natural time 161
 3.3.1 Background material 161
 3.3.2 The positivity of \(\kappa_1 \) and \(S \) 163
 3.3.3 The concavity of \(\kappa_1 \) and \(S \) 164
3.3.4 Lesche stability (or experimental robustness) of κ_1 and S 165
3.3.5 A more general theorem for entropic functionals in natural time .. 168

3.4 Entropy under time reversal ... 169
3.4.1 Definition of the entropy in natural time under time reversal 169
3.4.2 The case when the increments of the time series of Q_k are positive i.i.d. random variables of finite variance ... 170
3.4.3 Fractional Brownian motion time series ... 170
3.4.4 An on-off intermittency model .. 173
3.4.5 The case of signals that exhibit short-range temporal correlations 175
3.4.6 Interrelation between δS and σ/μ in the case of p.i.i.d 175

3.5 The change ΔS of the entropy in natural time under time reversal 180
3.5.1 Evaluation of ΔS_l when a (natural) time window of length l is sliding through a time series ... 180
3.5.2 Interrelation of $\sigma[\Delta S_l]$ and σ/μ in the case of p.i.i.d .. 181
3.5.3 A simple example in which the meaning of the entropy change ΔS under time reversal seems to emerge clearly ... 183

3.6 Complexity measures using the entropy in natural time .. 184
3.6.1 Complexity measures that make use of the fluctuations of the entropy S in natural time .. 184
3.6.2 Complexity measures that make use of the change ΔS of the entropy in natural time under time reversal ... 185

References ... 185

III. Natural Time Applications

4. Natural Time Analysis of Seismic Electric Signals ... 191
4.1 Dichotomous time series. Markovian and non-Markovian processes 192
4.1.1 Difference between natural time analysis and earlier studies of dichotomous time series. The Markovian process ... 192
4.1.2 Non-Markovian character of SES activities and “artificial” noises 193
4.1.3 Markovian dichotomous time series. Spectral analysis and detrended fluctuation analysis (DFA) ... 195
4.2 Normalized power spectrum of SES activities. The universality emerged in natural time ... 199
4.2.1 Normalized power spectrum of SES activities and “artificial” noises in natural time. A universality for SES activities ... 199
4.2.2 Distinction of SES activities from “artificial” noises based on the normalized power spectrum ... 201
4.3 Superiority of applying Hurst (R/S) analysis in the natural time domain 202
4.3.1 Conventional Hurst analysis .. 202
4.3.2 Hurst analysis of the time series of durations of the “high”- and the “low”-level states. Hurst analysis in natural time ... 205
4.4 Superiority of applying detrended fluctuation analysis (DFA) in the natural time domain ... 207
4.4.1 DFA of the original time series .. 207
4.4.2 DFA of the time series of durations of the “high”- and the “low”-level states. Superiority of applying DFA in natural time . . 208
4.5 Superiority of applying multifractal detrended fluctuation analysis (MF-DFA) in the natural time domain 210
4.5.1 Monofractals and multifractals. The necessity for multifractal analysis ... 210
4.5.2 Multifractal detrended fluctuation analysis, Background 211
4.5.3 Multifractal detrended fluctuation analysis in natural time compared to that in conventional time 212
4.6 Superiority of applying the wavelet transform in natural time 213
4.6.1 The wavelet transform, background. Comparison of the estimators of scaling behavior ... 213
4.6.2 The wavelet-based methods of estimating scaling behavior in natural time compared to that in conventional time 218
4.7 Combining the normalized power spectrum analysis and multifractal analysis in natural time. The K-means clustering algorithm 220
4.7.1 Combining the variance κ1 and the generalized Hurst exponent h(2) .. 220
4.7.2 The K-means clustering algorithm ... 221
4.7.3 Comments on the differences in the memory and the variance κ1 among electric signals of different nature 222
4.8 The fluctuation function $F(q) = \langle \chi^q \rangle - \langle \chi \rangle^q$ and the entropy S in natural time ... 222
4.8.1 Classification of electric signals based on the function $F(q) = \langle \chi^q \rangle - \langle \chi \rangle^q$ versus q in various types of electric signals 222
4.8.2 Classification of electric signals based on the entropy S in natural time ... 224
4.8.3 Classification of electric signals by the complexity measures using the fluctuations of the entropy in natural time 225
4.9 Using the entropy S_- or the fluctuations of natural time under time reversal ... 226
4.9.1 Distinction of SES activities from “artificial” noises based on the entropy in natural time under time reversal 226
4.9.2 Distinction of SES activities from “artificial” noises on the basis of the fluctuations of natural time under time reversal 228
4.10 Summary of the criteria in natural time for the distinction of SES activities from noise .. 230
4.11 Procedure to analyze a long-duration SES activity in natural time 231
References ... 233
5. Natural Time Investigation of the Effect of Significant Data Loss on Identifying Seismic Electric Signals .. 237
 5.1 Introduction ... 237
 5.2 Identification when removing randomly noise-contaminated data segments of fixed length ... 238
 5.3 Identification upon significant periodic data loss. The case of Japan ... 243
References ... 244

6. Natural Time Analysis of Seismicity .. 247
 6.1 Earthquake scaling laws ... 248
 6.2 The order parameter and the universal curve for seismicity. The b value of the G-R law from first principles 249
 6.2.1 The order parameter proposed for seismicity 249
 6.2.2 Universal curve for the seismicity in various regions 254
 6.2.3 Similarity of fluctuations in correlated systems including seismicity ... 257
 6.2.4 The pdf of the order parameter of seismicity. The b-value of the Gutenberg–Richter law deduced from first principles 259
 6.2.5 Multifractal cascades in natural time and the case of seismicity ... 261
 6.3 Temporal correlations in real seismic data 264
 6.3.1 Temporal correlations upon changing the magnitude threshold in a catalog ... 268
 6.3.2 The strength of temporal correlations as a function of the EQ inter-occurrence time ... 269
 6.4 Order parameter fluctuations of seismicity before and after mainshocks ... 270
 6.4.1 Feature of the pdf of the order parameter for seismicity. DFA of earthquake magnitude time series 270
 6.4.2 Prediction scheme by quantifying the bimodal feature of the pdf of the order parameter κ_1 for seismicity before mainshocks ... 274
 6.4.3 Concluding remarks .. 278
 6.5 Nonextensivity and natural time: the case of seismicity 278
 6.5.1 Non extensivity and earthquakes. The generalization of the Gutenberg–Richter law ... 279
 6.5.2 Combining nonextensivity with natural time analysis 281
 6.5.3 Discussion of the results obtained from the combination of nonextensivity with natural time analysis 284
 6.5.4 Conclusions from the combination of nonextensivity with natural time analysis of earthquakes ... 285
References ... 286

7. Identifying the Occurrence Time of an Impending Mainshock 291
 7.1 Determination of the time-window of the impending mainshock by analyzing in natural time the seismicity after the initiation of the SES activity ... 291
7.1.1 The preliminary procedure to determine the occurrence time of the impending mainshock ... 293
7.1.2 The updated procedure to determine the occurrence time of the impending mainshock ... 300
7.2 What happened before all earthquakes in Greece with $M_s(ATH) = 6.0$ or larger since 2001. The cases of the major earthquakes with magnitude $M_w6.4$ or larger since 1995 .. 303
7.2.1 The major Grevena-Kozani $M_w6.6$ earthquake on May 13, 1995 304
7.2.2 The major Eratini-Egion $M_w6.5$ earthquake on June 15, 1995 309
7.2.3 The major Aegean $M_w6.5$ earthquake on July 26, 2001 313
7.2.4 The major $M_w6.7$ earthquake in southern Greece on January 8, 2006 ... 318
7.2.5 The two major $M_w6.9$ and $M_w6.5$ earthquakes in southwestern Greece on February 14, 2008 320
7.2.6 $M_w6.4$ earthquake in the Peloponnesse on June 8, 2008 324
7.3 Summary of all SES predictions issued along with all earthquakes of magnitude $M_w \geq 6.0$ in Greece since 2001 326
7.4 The volcanic-seismic swarm activity in 2000 in the Izu Island region, Japan .. 327
7.4.1 Natural time analysis of the precursory electric signals 327
7.4.2 Natural time analysis of Izu 2000 seismicity subsequent to the initiation of the SES activity .. 330
7.4.3 Main conclusions from the study of the Izu 2000 case 333
7.5 Results from California: the $M_s7.1$ Loma Prieta earthquake on October 18, 1989 ... 334
8. Natural Time Analysis of Dynamical Models 341
8.1 Is self-organized criticality (SOC) compatible with prediction? Recent aspects. The models analyzed here in natural time 342
8.2 Natural time analysis of the Burridge & Knopoff “train” earthquake model .. 343
8.2.1 The earthquake model proposed by Burridge & Knopoff. The “train” model. Introduction ... 343
8.2.2 Natural time analysis of the “train” model 345
8.3 Natural time analysis of the Olami–Feder–Christensen (OFC) earthquake model .. 349
8.3.1 The Olami–Feder–Christensen model. Introduction 349
8.3.2 Natural time analysis of the Olami–Feder–Christensen model 350
8.3.3 The predictability of the OFC model based either on the mean energy or on the interrelation between the κ_1 value and the exponent of the inverse Omori law ... 358
8.3.4 The predictability of the OFC model on the basis of the change ΔS of the entropy in natural time under time reversal 360
8.3.5 Summary of the results .. 362

References ... 337
8.4 Explanation of $k_1 = 0.070$ for critical systems on the basis of the
dynamic scaling hypothesis .. 363
8.4.1 Natural time analysis of the 2D Ising model quenched close
to, but below, T_c. The qualitative similarity to the original SES
generation model ... 365
8.4.2 The original Bak–Tang–Wiesenfeld sandpile SOC model and its
fully deterministic version. Natural time analysis 368
8.4.3 Natural time analysis of the mean field case 370
8.5 Natural time analysis of time series of avalanches observed in laboratory
experiments .. 371
8.5.1 Time series of avalanches observed in ricepiles 371
8.5.2 Time series of magnetic flux avalanches observed in high T_c
superconductors. A generalized stochastic directed SOC model 373

References .. 377

9. Natural Time Analysis of Electrocardiograms 381
9.1 Natural time analysis of the RR, QRS and QT time series 381
9.1.1 Introduction ... 381
9.1.2 The quantities δS and δS_{shuf}. The non-Markovianity of
electrocardiograms ... 384
9.1.3 Distinction between healthy humans and sudden cardiac death
ones by means of either $\delta S(QT)$ or the ratio $\delta S_{shuf} / \delta S$ of the RR
or QRS intervals ... 389
9.2 Complexity measures of the RR, QRS and QT intervals in natural time
to classify sudden cardiac death individuals, heart disease patients and
truly healthy ones .. 393
9.2.1 Introduction ... 393
9.2.2 Distinction of sudden cardiac death individuals (SD) from truly
healthy ones (H) .. 395
9.2.3 Comparison of the present results in natural time with those
deduced from the Approximate Entropy (AE) or the Sample
Entropy (SE) to distinguish SD from H 404
9.2.4 The procedure for identifying SD among other individuals that
include healthy ones and heart disease patients 404
9.2.5 Distinction of heart disease patients from H 410
9.2.6 Complementarity of the complexity measures for identifying
sudden cardiac death individuals (SD) 410
9.2.7 The estimation errors in the procedure for identifying SD 413
9.3 Summarizing the conclusions for identifying sudden cardiac death
individuals (SD) upon considering the error levels 415
9.3.1 Summary of the conclusions for distinguishing SD from H 415
9.3.2 Summary of the conclusions for identifying SD among
individuals that also include heart disease patients and H 416
9.4 The change ΔS of the entropy in natural time under time reversal: identifying the sudden cardiac death risk and specifying its occurrence time ... 417

9.4.1 Specifying the occurrence time of the impending cardiac arrest by means of ΔS ... 417

9.4.2 Identifying the sudden cardiac death risk by means of complexity measures based on ΔS ... 420

9.4.3 Summary of the findings based on ΔS and their tentative explanation ... 422

9.5 Heart rate variability (HRV) and 1/f “noise”. A model in natural time that exhibits 1/f behavior ... 423

9.5.1 The 1/f “noise”. Background ... 423

9.5.2 An evolution model in natural time that exhibits 1/f behavior . . . 425

9.5.3 The 1/f model proposed and the progressive modification of HRV in healthy children and adolescents ... 429

9.5.4 The complexity measures obtained from the 1/f model and their comparison with HRV data ... 431

References ... 432

Index ... 437
Natural Time Analysis: The New View of Time
Precursory Seismic Electric Signals, Earthquakes and other Complex Time Series
Varotsos, P.; Sarlis, N.V.; Skordas, E.S.
2011, XXIV, 452 p., Hardcover
ISBN: 978-3-642-16448-4