Contents

Part I Introductory Material

1 Why Do Scientists and Engineers Need GPU’s Today? 3
Matthew G. Knepley and David A. Yuen

2 Happenings at the GPU Conference 13
Xian-yu Lang, Long Wang and David A. Yuen

Part II Hardware and Installations

3 Efficiency, Energy Efficiency and Programming of Accelerated
HPC Servers: Highlights of PRACE Studies 33
Lennart Johnsson

4 GRAPE and GRAPE-DR 79
Junichiro Makino

Part III Software Libraries

5 PARRAY: A Unifying Array Representation
for Heterogeneous Parallelism. 91
Yifeng Chen, Xiang Cui and Hong Mei

6 Practical Random Linear Network Coding on GPUs 115
Xiaowen Chu and Kaiyong Zhao

7 Preliminary Implementation of PETSc Using GPUs 131
Victor Minden, Barry Smith and Matthew G. Knepley
Part IV Industrial Applications

8 **Multi-scale Continuum-Particle Simulation on CPU–GPU Hybrid Supercomputer** .. 143
 Wei Ge, Ji Xu, Qingang Xiong, Xiaowei Wang, Feiguo Chen, Limin Wang, Chaofeng Hou, Ming Xu and Jinghai Li

9 **GPU Best Practices for HPC Applications at Industry Scale** 163
 Peng Wang and Stan Posey

10 **Simulation of 1D Condensing Flows with CESE Method on GPU Cluster** .. 173
 Wei Ran, Wan Cheng, Fenghua Qin and Xisheng Luo

11 **Two-Way Coupled Sprays and Liquid Surface: A GPU-Based Multi-Scale Fluid Animation Method** 187
 Guijuan Zhang, Gaojin Wen and Shengzhong Feng

12 **High Performance Implementation of Binomial Option Pricing Using CUDA** .. 201
 Yechen Gui, Shenzhong Feng, Gaojin Wen, Guijuan Zhang, Yanyi Wan and Tao Liu

13 **Research of Acceleration MS-Alignment Identifying Post-Translational Modifications on GPU** 215
 Zhai Yantang, Tu Qiang, Lang Xianyu, Lu Zhonghua and Chi Xuebin

Part V Chemical Physical Applications

14 **GPU Tuning for First-Principle Electronic Structure Simulations** ... 235
 Yue Wu, Weile Jia, Lin-Wang Wang, Weiguo Gao, Long Wang and Xuebin Chi

15 **Nucleation and Reaction of Dislocations in Some Metals and Intermetallic Compound TiAl** 247
 D. S. Xu, H. Wang and R. Yang
Part VI Geophysical and Fluid Dynamical Application

16 Large-Scale Numerical Weather Prediction on GPU Supercomputer 261
 Takayuki Aoki and Takashi Shimokawabe

17 Targeting Atmospheric Simulation Algorithms for Large, Distributed-Memory, GPU-Accelerated Computers 271
 Matthew R. Norman

18 Investigation of Solving 3D Navier–Stokes Equations with Hybrid Spectral Scheme Using GPU 283
 Ying Xu, Lei Xu, D. D. Zhang and J. F. Yao

19 Correlation of Reservoir and Earthquake by Multi Temporal-Spatial Scale Flow Driven Pore-Network Crack Model in Parallel CPU and GPU Platform 295
 B. J. Zhu, C. Liu, Y. L. Shi and D. A. Yuen

20 A Full GPU Simulation of Evolving Fracture Networks in a Heterogeneous Poro-Elasto-Plastic Medium with Effective-Stress-Dependent Permeability 305
 Boris Galvan and Stephen Miller

21 GPU Implementation of Multigrid Solver for Stokes Equation with Strongly Variable Viscosity 321
 Liang Zheng, Taras Gerya, Matthew Knepley, David A. Yuen, Huai Zhang and Yaolin Shi

22 High Rayleigh Number Mantle Convection on GPU 335
 David A. Sanchez, Christopher Gonzalez, David A. Yuen, Grady B. Wright and Gregory A. Barnett

23 High-Order Discontinuous Galerkin Methods by GPU Metaprogramming 353
 Andreas Klöckner, Timothy Warburton and Jan S. Hesthaven

24 Accelerating Large-Scale Simulation of Seismic Wave Propagation by Multi-GPUs and Three-Dimensional Domain Decomposition 375
 Taro Okamoto, Hiroshi Takenaka, Takeshi Nakamura and Takayuki Aoki
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Support Operator Rupture Dynamics on GPU</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Shenyi Song, Yichen Zhou, Tingxing Dong and David A. Yuen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part VII Algorithms and Solvers</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A Geometric Multigrid Solver on GPU Clusters</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Harald Koestler, Daniel Ritter and Christian Feichtinger</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Accelerating 2-Dimensional CFD on Multi-GPU Supercomputer</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Sen Li, Xinliang Li, Long Wang, Zhonghua Lu and Xuebin Chi</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Efficient Rendering of Order Independent Transparency on the GPUs</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Fang Liu</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Performance Evaluation of Fast Fourier Transform</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Application on Heterogeneous Platforms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xiaojun Li, Yang Gao, Xinyu Ma and Ying Liu</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Accurate Evaluation of Local Averages on GPGPUs</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>Dmitry A. Karpeev, Matthew G. Knepley and Peter R. Brune</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Accelerating Swarm Intelligence Algorithms with GPU-Computing</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>Robin M. Weiss</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Asynchronous Parallel Logic Simulation on Modern Graphics Processors</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Yangdong Deng, Yuhao Zhu and Wang Bo</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Implementations of Main Algorithms for Generalized Symmetric Eigenproblem on GPU Accelerator</td>
<td>543</td>
</tr>
<tr>
<td></td>
<td>Yonghua Zhao, Fang Liu, Yangang Wang and Xuebin Chi</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Using Mixed Precision Algorithm for LINPACK Benchmark on AMD GPU</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>Xianyi Zhang, Yunquan Zhang and Lei Wang</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Parallel Lattice Boltzmann Method on CUDA Architecture</td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>Weibing Feng, Wu Zhang, Bing He and Kai Wang</td>
<td></td>
</tr>
</tbody>
</table>
Part VIII Visualization

36 Iterative Deblurring of Large 3D Datasets from Cryomicrotome Imaging Using an Array of GPUs ... 573
Thomas Geenen, Pepijn van Horssen, Jos A. E. Spaan, Maria Siebes and Jeroen P. H. M. van den Wijngaard

37 WebViz: A Web-Based Collaborative Interactive Visualization System for Large-Scale Data Sets 587
Yichen Zhou, Robin M. Weiss, Elizabeth McArthur, David Sanchez, Xiang Yao, Dave Yuen, Mike R. Knox and W. Walter Czech

38 Interactive Visualization Tool for Planning Cancer Treatment . . . 607
R. Wcisło, W. Dzwinel, P. Gosztyla, D. A. Yuen and W. Czech

39 High Throughput Heterogeneous Computing and Interactive Visualization on a Desktop Supercomputer 639
S. Zhang, R. Weiss, S. Wang, G. A. Barnett Jr. and D. A. Yuen

40 Applications of Microtomography to Multiscale System Dynamics: Visualisation, Characterisation and High Performance Computation ... 653
Jie Liu, Klaus Regenauer-Lieb, Chris Hines, Shuxia Zhang, Paul Bourke, Florian Fusseis and David A. Yuen

41 Three-Dimensional Reconstruction of Electron Tomography Using Graphic Processing Units (GPUs) 675
Xiaohua Wan, Fa Zhang, Qi Chu and Zhiyong Liu

Index .. 691