Contents

I Stochastic Differential Equations in Infinite Dimensions

1 Partial Differential Equations as Equations in Infinite Dimensions 3
 1.1 The Heat Equation as an Abstract Cauchy Problem 3
 1.2 Elements of Semigroup Theory 5
 1.3 Commonly Used Function Spaces 10
 1.4 The Abstract Cauchy Problem 11
 1.5 The Variational Method 15

2 Stochastic Calculus .. 17
 2.1 Hilbert-Space-Valued Process, Martingales, and Cylindrical
 Wiener Process .. 17
 2.1.1 Cylindrical and Hilbert-Space-Valued Gaussian Random
 Variables .. 17
 2.1.2 Cylindrical and Q-Wiener Processes 19
 2.1.3 Martingales in a Hilbert Space 21
 2.2 Stochastic Integral with Respect to a Wiener Process 23
 2.2.1 Elementary Processes 25
 2.2.2 Stochastic Itô Integral for Elementary Processes 26
 2.2.3 Stochastic Itô Integral with Respect to a Q-Wiener Process 34
 2.2.4 Stochastic Itô Integral with Respect to Cylindrical Wiener
 Process .. 44
 2.2.5 The Martingale Representation Theorem 49
 2.2.6 Stochastic Fubini Theorem 57
 2.3 The Itô Formula ... 61
 2.3.1 The Case of a Q-Wiener Process 61
 2.3.2 The Case of a Cylindrical Wiener Process 69

3 Stochastic Differential Equations 73
 3.1 Stochastic Differential Equations and Their Solutions 73
 3.2 Solutions Under Lipschitz Conditions 84
 3.3 A Special Case ... 103
3.4 Markov Property and Uniqueness .. 107
3.5 Dependence of the Solution on the Initial Value 111
3.6 Kolmogorov’s Backward Equation 117
3.7 Lipschitz-Type Approximation of Continuous Coefficients 125
3.8 Existence of Weak Solutions Under Continuity Assumption 128
3.9 Compact Semigroups and Existence of Martingale Solutions ... 135
3.10 Mild Solutions to SSDEs Driven by Cylindrical Wiener Process . 141
Appendix: Compactness and Tightness of Measures in $C([0, T], M)$.. 148

4 Solutions by Variational Method .. 151
4.1 Introduction ... 151
4.2 Existence of Weak Solutions Under Compact Embedding 152
4.3 Strong Variational Solutions ... 174
4.4 Markov and Strong Markov Properties 181

5 Stochastic Differential Equations with Discontinuous Drift 185
5.1 Introduction ... 185
5.2 Unbounded Spin Systems, Solutions in $C([0, T], H^w)$ 185
5.3 Locally Interacting Particle Systems, Solutions in $C([0, T], R^{Z_d})$ 194

Part II Stability, Boundedness, and Invariant Measures

6 Stability Theory for Strong and Mild Solutions 203
6.1 Introduction ... 203
6.2 Exponential Stability for Stochastic Differential Equations 211
6.3 Stability in the Variational Method 225
Appendix: Stochastic Analogue of the Datko Theorem 230

7 Ultimate Boundedness and Invariant Measure 233
7.1 Exponential Ultimate Boundedness in the m.s.s 233
7.2 Exponential Ultimate Boundedness in Variational Method 237
7.3 Abstract Cauchy Problem, Stability and Exponential Ultimate
 Boundedness ... 246
7.4 Ultimate Boundedness and Invariant Measure 255
 7.4.1 Variational Equations ... 261
 7.4.2 Semilinear Equations Driven by a Q-Wiener Process 266
 7.4.3 Semilinear Equations Driven by a Cylindrical Wiener
 Process ... 271
7.5 Ultimate Boundedness and Weak Recurrence of the Solutions . 274

References ... 285

Index ... 289
Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations
Gawarecki, L.; Mandrekar, V.
2011, XVI, 291 p., Hardcover
ISBN: 978-3-642-16193-3