Contents

1 Introduction .. 1
1.1 What is Wave Turbulence? 1
1.2 Historic Remarks 1
1.3 Recent Developments 2
1.3.1 Rapid Expansion of WT Applications 3
1.3.2 Highly Improved Quality of Experimental Data
and Numerical Simulations of WT Systems 4
1.3.3 Discovery of Importance of Coherent Structures
in WT Evolution 5
1.3.4 Theory Extension Beyond Spectra 6
1.3.5 Study of the Finite-Box Effects 6
1.4 What is this Book About? 7
References ... 9

Part I Primer on Wave Turbulence

2 Wave Turbulence as a Part of General Turbulence Theory 17
2.1 Basic Facts about Hydrodynamic Turbulence 17
2.1.1 Richardson Cascade 18
2.1.2 Kolmogorov–Obukhov Theory 19
2.1.3 2D Turbulence 20
2.2 Placing Wave Turbulence in the Context of General Turbulence ... 25
2.2.1 Common Turbulence Properties 25
2.2.2 Distinct Properties of WT 26
References ... 27

3 For the Impatient: A WT Cheatsheet 29
3.1 Weak Wave Turbulence 30
Contents

3.1.2 Dimensional Derivation of KZ Spectra 32
3.1.3 Examples .. 34
3.2 Strong Wave Turbulence and Critical Balance 40
3.2.1 MHD Turbulence .. 40
3.2.2 Gravity Water Waves ... 41
3.2.3 Stratified Turbulence ... 42
3.2.4 Rotating Turbulence .. 43
3.2.5 Quasi-Geostrophic Turbulence 44
3.2.6 Kelvin Waves ... 45
3.2.7 Burgers? KdV? ... 46

References ... 47

4 Solutions to Exercises .. 49
4.1 Fjørtoft Argument in Terms of Centroids: Exercise 2.1 49
4.2 k-Centroids versus l-centroids: Exercise 2.2 50
4.3 Four-Wave Resonances in 1D Systems: Exercise 3.1 50
4.4 Four-Wave $3 \rightarrow 1$ Resonances in 2D Systems: Exercise 3.2 51

References ... 52

Part II Wave Turbulence Closures

5 Statistical Objects in Wave Turbulence 55
5.1 Statistical Variables ... 55
5.2 Probability Density Functions .. 57
5.3 Random Phase and Amplitude Fields 58
5.4 Generating Functions .. 59
5.5 Wave Spectrum, Higher Moments and Structure Functions 60
5.6 RPA Averaging .. 63

References ... 66

6 Wave Turbulence Formalism ... 67
6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks ... 67
6.1.1 Mahayana (Comprehensive Scheme) 68
6.1.2 Hinayana (Reduced Scheme) 71
6.2 Master Example: Petviashvilli Equation 71
6.2.1 Conservation Laws .. 72
6.2.2 Fourier Space .. 73
6.2.3 Interaction Representation 74
6.3 Weak Nonlinearity Expansion .. 75
6.3.1 Solution for the Wave Amplitudes at Intermediate Times 75
6.3.2 Weak Nonlinearity Expansion for the Generating Function

6.4 Statistical Averaging

6.5 Large-Box and Weak-Nonlinearity Limits

6.5.1 Taking \(L \to \infty \)

6.5.2 Taking \(\epsilon \to 0 \)

6.6 The PDF

6.7 Kinetic Equation

6.7.1 Symmetrical Form of the Kinetic Equation

6.8 Generalization to Complex Wavefields

6.8.1 Hamiltonian Wave Equations

6.9 Four-Wave and Higher-Order Systems

6.9.1 Four-Wave Systems

6.9.2 Systems with Higher-Order Wave Resonances

6.10 Evolution of Multi-Mode Statistics

6.10.1 Weak Nonlinearity Expansion of the Generating Function

6.10.2 Statistical Averaging and Graphs

6.10.3 Equation for \(\mathcal{Z}(N) \)

6.10.4 Equation for the PDF

6.11 Generalization to the Four-Wave and the Higher-Order Systems

References

7 Solutions to Exercises

7.1 One-Mode Generating Function for Gaussian Fields: Exercise 5.1

7.2 One-Mode Moments for Gaussian Fields: Exercise 5.2

7.3 Six-Order Multi-Point Moment: Exercise 5.3

7.4 Fourth-Order Structure Function: Exercise 5.4

7.5 Invariants of the Petviashvili Equation: Exercise 6.1

7.6 Charney-Hassegawa-Mima model: Exercise 6.2

7.7 \(T \to \infty \) Limit: Exercise 6.4

7.8 Slow and Fast Timescales in the Wave Amplitude Evolution: Exercise 6.7

7.9 Eliminating \(U_{123} \): Exercise 6.9

7.10 Nonlinear Phase Evolution: Exercise 6.11

7.11 Inconsistency of WT Expansions Without Frequency Re-Normalization: Exercise 6.12

7.12 Finding \(G_3-G_5 \): Exercise 6.16

7.13 Appendix: Interaction Coefficient for the Deep Water Surface Waves

References
Part III Wave Turbulence Predictions

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Conserved Quantities in Wave Turbulence and their Cascades</td>
<td>119-132</td>
</tr>
<tr>
<td>8.1</td>
<td>Conserved Quantities in Wave Turbulence</td>
<td>119-123</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Energy and Momentum</td>
<td>119-120</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Three-Wave Systems</td>
<td>119-122</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Four-Wave Systems</td>
<td>119-123</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Conservation Laws in the Multi-Particle Statistics</td>
<td>119-125</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Relation Between the Dynamical and the Statistical Invariants</td>
<td>119-132</td>
</tr>
<tr>
<td>8.2</td>
<td>Directions of Turbulent Cascades</td>
<td>126-132</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Dual Cascade in the NLS and Other Even-Wave Systems</td>
<td>126-132</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Cascade of Momentum and Other Non-Positive Invariants</td>
<td>126-132</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Triple Cascade in the Petviashvili and Other Rossby/Drift Wave Systems</td>
<td>126-132</td>
</tr>
<tr>
<td>9</td>
<td>Steady State and Evolving Solutions for the Wave Spectrum</td>
<td>133-150</td>
</tr>
<tr>
<td>9.1</td>
<td>Thermodynamic Equilibrium States: Rayleigh-Jeans Spectra</td>
<td>133-135</td>
</tr>
<tr>
<td>9.2</td>
<td>Cascade States: Kolmogorov-Zakharov Spectra</td>
<td>133-140</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Three-Wave Systems</td>
<td>133-140</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Four-Wave Systems</td>
<td>133-140</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Temporal Evolution Leading to KZ Spectra: Finite and Infinite Capacity Systems</td>
<td>133-140</td>
</tr>
<tr>
<td>9.2.4</td>
<td>KZ Spectra in Anisotropic Media</td>
<td>133-140</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Other Power-Law Spectra in Anisotropic Media</td>
<td>133-140</td>
</tr>
<tr>
<td>9.2.6</td>
<td>Locality and Stability</td>
<td>133-140</td>
</tr>
<tr>
<td>10</td>
<td>Finite-Size Effects in Wave Turbulence</td>
<td>163-171</td>
</tr>
<tr>
<td>10.1</td>
<td>Small-Box Regime: Discrete Turbulence</td>
<td>163-164</td>
</tr>
<tr>
<td>10.2</td>
<td>Infinite-Box Regime: Kinetic Wave Turbulence</td>
<td>163-166</td>
</tr>
<tr>
<td>10.3</td>
<td>Mesoscopic Turbulence: Sandpile Behavior</td>
<td>163-167</td>
</tr>
<tr>
<td>10.4</td>
<td>Coexistence of Different Regimes in the k-Space</td>
<td>163-169</td>
</tr>
<tr>
<td>10.5</td>
<td>Cascade Tree in the Discrete k-Space</td>
<td>163-169</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>163-171</td>
</tr>
</tbody>
</table>
11.1 Solutions for the One-Mode PDFs and the Moments 173
11.2 Wave Turbulence Life Cycle 177
11.3 Solutions for the N-Mode Joint PDF’s 180
11.4 Validity of RPA ... 182
References .. 184

12 Solutions to Exercises .. 185
12.1 Zonostrophy Invariant: Exercise 8.1 185
12.2 Waveaction Conservation for the Four-Wave Systems: Exercise 8.3 ... 186
12.3 Rayleigh-Jeans Solutions: Exercise 9.1 186
12.5 Zakharov Transform for the Four-Wave Systems: Exercise 9.3 ... 187
12.6 Geometrical Condition of Stability: Exercise 9.9 187
Reference .. 188

Part IV Selected Applications

13 Nonlocal Drift/RossbyWave Turbulence 191
13.1 When is Turbulence Nonlocal? 191
13.2 Nonlocal weak Drift/Rossby Turbulence 192
13.2.1 Nonlocal Interaction with Large Scales 192
13.2.2 Evolution of Nonlocal Rossby/Drift Turbulence: a Feedback Loop .. 194
13.2.3 Nonlocal Interaction with Small-Scale Zonal Flows 197
13.3 Beyond Weak Turbulence: Two Regimes of Zonal-Flow Growth ... 199
13.3.1 Weak ZF: Diffusive Regime 202
13.3.2 Strong ZF: Rapid Distortion Regime 203
13.3.3 Transition Between the Two Regimes of the Zonal Flow Generation .. 204
13.4 Numerical Modeling of the Forced-Dissipated CHM Equation .. 204
13.5 Solution to Exercise ... 207
13.5.1 Relation Between the Spectrum and the Velocity of the Large Scales: Exercise 13.1 207
References .. 207
14 Magneto-Hydrodynamic Turbulence

14.1 Introduction .. 209
14.2 Reduced MHD model 210
14.3 Very Weak WT: Discrete Regime and 2D Enslaving 213
14.4 Large-Box Limit: Kinetic Regime 215
 14.4.1 Weak Nonlinearity Expansion 215
 14.4.2 Statistical Averaging 216
 14.4.3 Conditions of Realizability of the Kinetic Regime 220
 14.4.4 Spectra in the Kinetic Regime: Energy Cascades—Balanced and Imbalanced Turbulence 221
 14.4.5 Cross-Helicity 223
 14.4.6 Transient Evolution Leading to Formation of the KZ Spectrum 224
 14.4.7 PDF’s in the Kinetic Regime: Turbulence Intermittency 224
14.5 Mesoscopic MHD Wave Turbulence 226
14.6 Summary .. 227
14.7 Further Reading .. 227
References ... 229

15 Bose-Einstein Condensation 231

15.1 Introduction .. 231
15.2 Kinetic Equation for the Wave Spectrum 231
15.3 Role of Thermodynamic Solutions 232
15.4 Non-Equilibrium Condensation and KZ Spectra 236
15.5 Differential Approximation Model 238
 15.5.1 DAM for NLS Wave Turbulence 238
 15.5.2 What Happens When a Pure KZ Spectrum Corresponds to “Wrong” Flux Direction? 240
 15.5.3 Extending BEC Description to Include Thermal Clouds 242
 15.5.4 Wave-Particle Crossover in Turbulent BEC Cascades 244
15.6 Transient Evolution, Self-Similar Spectra 245
15.7 Breakdown of the Weak Four-Wave Turbulence and Transition to a Three-Wave Regime 246
 15.7.1 WT on Background of Strong Condensate 246
 15.7.2 Strongly Nonlinear Transition Between the Two Weakly Nonlinear Regimes 248
15.8 Direct Cascade in 3D NLS 254
15.9 Inhomogeneous WT in a Trapping Potential 256
15.10 Condensation in 1D Systems: Optical Turbulence 259
15.11 Summary .. 262
15.12 Solutions to Exercises ... 263
 15.12.1 Direct Cascade in 2D NLS: Exercise 15.2 263
 15.12.2 Front Solution for Inverse Cascade in 2D NLS:
 Exercise 15.3 ... 263
 15.12.3 KZ Solutions and Flux Directions for Boltzmann
 Gas: Exercise 15.4 264
 15.12.4 Front Solutions for Boltzmann: Exercise 15.5 265
 15.12.5 Madelung Transformation: Exercise 15.6 265
 15.12.6 KZ Spectra for 1D Optical Turbulence:
 Exercise 15.7 ... 265
 15.12.7 DAM for 1D Optical Turbulence: Exercise 15.8 ... 267

References ... 267

16 List of Projects .. 269
 16.1 Differential Approximation Models for WT and for Strong
 Turbulence ... 269
 16.2 Collapses and Their Role in WT Cycle 271
 16.3 Modulational Instability and its Role in WT 271
 16.4 Interacting Particle Systems 272
 16.5 Superfluid Turbulence .. 273
 16.6 Gravity Water Wave Turbulence 275
 16.7 Metal-Plate Wave Turbulence 275

References ... 276
Wave Turbulence
Nazarenko, S.
2011, XVI, 279 p., Softcover
ISBN: 978-3-642-15941-1