Contents

1 Introduction .. 1
References .. 3

2 From Atomistic Calculations to Thermodynamic Quantities 5
2.1 The Rigid Rotor Harmonic Oscillator Model 5
2.1.1 Essentials .. 5
2.1.2 Molecular Systems and Approximations 11
2.2 The Quantum Cluster Equilibrium Approach 20
2.2.1 Essentials .. 20
2.2.2 Thermodynamics from Quantum Cluster Equilibrium calculations .. 30
2.3 Thermodynamic Data from Molecular Dynamics Simulations ... 32
2.3.1 Equilibrium Methods 32
2.3.2 A Unified Nonequilibrium Approach 38
References .. 40

3 Assessment of the Rigid Rotor Harmonic Oscillator Model at Increased Densities 43
3.1 Supramolecular Compounds as Test Systems of High Complexity .. 43
3.1.1 The Rotaxane Architecture 43
3.1.2 Systems Investigated 45
3.1.3 Evaluation of Thermodynamic Quantities 52
3.2 A Quantitative Error Analysis of the Rigid Rotor Harmonic Oscillator Model 64
3.2.1 Analysis of the Particle Number Effect 64
3.2.2 Quantification of Errors 80
3.2.3 Entropy Changes from the Rigid Rotor Harmonic Oscillator Model at Increased Densities 101
References .. 117
4. Liquid Phase Thermodynamics from the Quantum Cluster Equilibrium Model

4.1 Quantum Cluster Equilibrium Computations for Associated Liquids

4.1.1 Systems Investigated and Cluster Sets

4.1.2 Zeroth Order Quantum Cluster Equilibrium Calculations

4.1.3 Mean Field Attraction and Adjustment of Parameters

4.2 Liquid Phase Entropies from the Quantum Cluster Equilibrium Model

4.2.1 Entropies from the Zeroth Order Model

4.2.2 Mean Field Attraction and Entropy

4.2.3 Summary of Liquid Phase Calculations

References

5. Phase Transitions

5.1 Phase Transition Properties from the Parameter-Free Model

5.1.1 Entropy Changes

5.1.2 Other Quantities

5.2 Liquid–Vapor Phase Transition and Cooperativity

5.2.1 Isobars in the Liquid–Vapor Phase Transition Domain

5.2.2 First Principles Vaporization Entropies and Trouton’s Rule

5.2.3 Decomposition into Cluster Degrees of Freedom and Summary

References

6. Outlook

References

7. Appendix

7.1 Computational Details

7.1.1 Rigid Rotor Harmonic Oscillator Calculations (Chap. 3)

7.1.2 Quantum Cluster Equilibrium Calculations (Chaps. 4, 5)

7.2 The Effect of the Boltzmann Operator on a Product Wave Function for Non-Interacting Particles

References

Index
Entropies of Condensed Phases and Complex Systems
A First Principles Approach
Spickermann, C.
2011, XVI, 225 p., Hardcover
ISBN: 978-3-642-15735-6