Phosphorus (P) is an essential element for all living organisms. In terrestrial ecosystems, P is often the most limiting nutrient. Due to human alteration of the P cycle, pollution with excess P is prevalent in many aquatic ecosystems and can also affect biodiversity in terrestrial ecosystems. Because economically mineable P deposits are finite, a better management of the P cycle is mandatory. This requires a good understanding of the processes of soil P dynamics.

Soil P occurs in inorganic and organic forms. Forms of P in the mineral phase, the physicochemical processes of sorption and desorption, and their effects on P cycling and availability are well known and predictable. Organic P forms are less well characterized and the biological processes (e.g., mineralization and immobilization) affect P dynamics to varying and often unknown degrees. In addition, the interactions of P dynamics with carbon and nitrogen are not well understood.

The chemical characterization of organic P and its dynamics in terrestrial as well as aquatic environments have been reviewed in a book quite recently (Turner et al. 2005). One conclusion from this book was that information on the mechanisms and rates of organic P transformations is urgently needed in order to better manage soil organic P. Given the great amount of information included in this “Organic P Bible”, we hesitated when we were asked by the series editor Ajit Varma to publish a book on P in the Springer Series on Soil Biology. However, we realized that significant progress has been made in the last 5 years, and that it was indeed timely to collect the existing information on the biological processes in soil P cycling and present the state of the art. Measuring the rates of any reaction in soil is a step towards understanding the “action”, and therefore we decided that our book should focus on ‘phosphorus in action’.

We planned three sections: one on methods, one on processes, and one on ecosystems and management. We asked the authors to present case studies rather than a complete review of the topic, wherever appropriate. We also asked the authors to consider two aspects in particular: (1) that the role of biological processes in soil P cycling has to be examined against the availability of inorganic P resulting from physicochemical processes and (2) that interactions between carbon, nitrogen,
and P have to be examined to fully understand similarities and differences of P cycling to the cycling of the other elements. Lastly, authors were asked to point out gaps in methods and understanding.

We are extremely grateful to all authors for contributing such an impressive number of high quality chapters. Some chapters were written by scientists who have been working together before. In other chapters, authors published together for the first time and found the exchange of ideas during the preparation stimulating. Some chapters present the state-of-the-art of topics that have been reviewed previously. Other topics have never been summarized before and the authors thus compiled truly original chapters.

As a teaser for the book, we would like to point out some of its highlights (Table 1). To our minds, this table is an attempt to assess the progress that has been made in the field, but of course you will find much more in-depth and significant information within each chapter. At the end of the book, we have tried to draw some general conclusions and to summarize the main research needs.

Table 1 Editors’ choice of highlights in each chapter

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Authors</th>
<th>Highlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Doolette and Smernik</td>
<td>Useful summary of the relative merits of solution and solid state 31P nuclear magnetic resonance (NMR), and X-ray absorption near edge structure (XANES) in terms of sample preparation, sensitivity, resolution and quantification</td>
</tr>
<tr>
<td>2</td>
<td>Bünemann et al.</td>
<td>Novel data on P forms in microbial cells extracted from soil, i.e. cells that grew in situ, including non-culturable soil microorganisms</td>
</tr>
<tr>
<td>3</td>
<td>Frossard et al.</td>
<td>First combined review of radioactive and stable isotopes in the study of P cycling, also summarizing recent progress in the measurement of gross and net organic P mineralization rates</td>
</tr>
<tr>
<td>4</td>
<td>Wasaki and Maruyama</td>
<td>Informative table listing the molecular tools to study soil P cycling and applications in the pioneering studies done in the past 10 years</td>
</tr>
<tr>
<td>5</td>
<td>Schnepf et al.</td>
<td>Three modeling case studies as excellent examples of how the most important processes of P cycling in soil-plant systems can be identified and quantified on different temporal and spatial scales</td>
</tr>
<tr>
<td>6</td>
<td>Jansa et al.</td>
<td>Stimulating information on the accessibility of different soil P forms by arbuscular mycorrhizal and ectomycorrhizal fungi</td>
</tr>
<tr>
<td>7</td>
<td>Jones and Oburger</td>
<td>Thorough summary of mechanisms of P solubilization by soil microorganisms</td>
</tr>
<tr>
<td>8</td>
<td>Chapuis-Lardy et al.</td>
<td>Interesting presentation of the role of earthworms’ surface casts and termite mounds, respectively, in P transfer and erosion</td>
</tr>
<tr>
<td>9</td>
<td>Nannipieri et al.</td>
<td>Critical examination of the limitations of conventional enzyme assays</td>
</tr>
<tr>
<td>10</td>
<td>George et al.</td>
<td>Eye-opening section on the co-ordination of plant responses to variations in P supply</td>
</tr>
<tr>
<td>11</td>
<td>Jouany et al.</td>
<td>Noteworthy figure illustrating that a grassland sward is more efficient in converting nitrogen into biomass under non-limiting than under limiting P supply</td>
</tr>
<tr>
<td>12</td>
<td>Weintraub</td>
<td>Comprehensive section on P limitation in arctic and alpine soils, including results from fertilization studies</td>
</tr>
</tbody>
</table>

(continued)
Finally, we would like to acknowledge everyone who has contributed to this book. All 63 authors deserve a very warm thank you for their willingness to contribute, the many hours of work that went into each chapter, and for the excellent communication with us. We had been warned that we would have to write many reminders, but in fact it was a very positive experience for us to work with these 18 leading authors.

Each chapter was reviewed by one or two external reviewers. All of them readily accepted the task and their efforts helped to improve the quality of the book in a very significant way. Thus, we would like to thank all of them for their dedication:

Mark Bakker, INRA Bordeaux
David E. Bignell, Queen Mary, University of London
Ruth E. Blake, Yale University
Barbara J. Cade-Menun, Agriculture and Agri-Food Canada
Cory Cleveland, University of Montana
Peter Cornish, University of Western Sydney
Tim Crews, Prescott College, Arizona
Warwick J. Dougherty, Primary Industries, Industry and Investment NSW
Reiner Giesler, Umeå University
Guy Kirk, Cranfield University
Ellen Kandeler, Hohenheim University
Petra Marschner, University of Adelaide
Roel Merckx, Katholieke Universiteit Leuven
Mike McLaughlin, CSIRO Land and Water, Adelaide
Claude Plassard, INRA Montpellier
Alan Richardson, CSIRO Plant Industry, Canberra
Peter Schweiger, University of Natural Resources and Applied Life Sciences, Vienna
Robert Sinsabaugh, University of New Mexico
Harry Olde Venterink, ETH Zurich
Peter Vitousek, Stanford University
Jutta Lindenborn and the entire staff at Springer (including Mr. Balamurugan Elumalai and his team at SPi Technologies India Private Ltd.) were extremely helpful during the publishing process. Cornelia Bühlmann and Kathrin von Arx thoroughly checked the formal aspects and reference lists of each chapter. Last but not least, we thank Ajit Varma for initiating this book.

Lindau, Switzerland

Else K. Büнемann
Astrid Oberson
Emmanuel Frossard

Reference

Phosphorus in Action
Biological Processes in Soil Phosphorus Cycling
Bünemann, E.K.; Oberson, A.; Frossard, E. (Eds.)
2011, XV, 483 p., Hardcover
ISBN: 978-3-642-15270-2