Contents

Part I Introduction and Motivation

1 Introduction to Molecular Electronics 3
 1.1 Present Technology .. 6
 1.2 Limitations of Present Technology 6
 References .. 8

2 Motivation—Focusing on Molecular Wires 9
 References .. 10

Part II Theoretical Concepts

3 Concepts of Photoinduced Electron and Energy Transfer Processes Across Molecular Bridges 13
 3.1 Introduction .. 13
 3.2 Electron Transfer Mechanisms 14
 3.2.1 Superexchange 16
 3.2.2 Charge Hopping 19
 3.2.3 Interplay of Mechanisms 21
 3.3 Electronic Energy Transfer 21
 3.3.1 Coulombic Energy Transfer 23
 3.3.2 Exchange Energy Transfer 23
 References .. 24

4 Molecule-Assisted Transport of Charges and Energy Across Donor–Wire–Acceptor Junctions 27
 4.1 Mechanisms of Charge Transfer through Molecular Wires 28
 4.1.1 Superexchange Charge Transfer in Molecular Wires 29
 4.1.2 Sequential Charge Transfer in Molecular Wires 30
Contents

4.2 Factors that Determine the Charge Transfer Mechanism
- 4.2.1 Electronic Coupling
- 4.2.2 Energy Matching

4.3 Specific Aspects of Photoinduced Electron Transfer in Organic π-Conjugated Systems
- 4.3.1 Background
- 4.3.2 The Classical Marcus Theory
- 4.3.3 Photoexcitation and Relaxation Processes in Solution
- 4.3.4 Influence of the Solvation on the Electronic Relaxation Dynamics

References

5 Examples of Molecular Wire Systems
- 5.1 Oligo(phenylenevinylene)s
- 5.2 Oligophenylenes
- 5.3 Oligo(thiophene)s
- 5.4 Photonic Wires

References

Part III Results and Discussion

6 Objective

References

7 Instruments and Methods
- 7.1 Photophysics
 - 7.1.1 Absorption Spectroscopy
 - 7.1.2 Steady-state Emission
 - 7.1.3 Time-resolved Emission
 - 7.1.4 Femtosecond Transient Absorption Spectroscopy
 - 7.1.5 Nanosecond Laser Flash Photolysis
- 7.2 Chemicals
- 7.3 Molecular Modeling

References

8 Energy Transfer Systems
- 8.1 Linking two C₆₀ Electron Acceptors to a Molecular Wire
 - 8.1.1 C₆₀–oPPE–C₆₀—A Representative Example for Efficient Energy Transfer
 - 8.1.2 Energy Transfer in C₆₀–oligo(fluorene)–C₆₀
- 8.2 Tunable Excited State Deactivation
 - 8.2.1 Photophysics

References
9 Electron Transfer Systems .. 99
 9.1 p-Phenyleneethynylene Molecular Wires 99
 9.1.1 exTTF–oPPE–C₆₀ Donor–Acceptor Conjugates 100
 9.1.2 H₂P/ZnP–oPPE–C₆₀ Donor–Acceptor Conjugates 116
 9.1.3 Meta-Connectivity—Influence of Structure on
 Molecular Wire Properties 131
 9.2 oligo-Fluorene Molecular Wires 145
 9.2.1 exTTF–oFL–C₆₀ Donor–Acceptor Conjugates 146
 9.2.2 ZnP–oFL–C₆₀ and Ferrocene–oFL–C₆₀
 Donor–Acceptor Conjugates 157
References ... 171

10 Conclusions and Outlook .. 173

Curriculum Vitae .. 179

Publications ... 181
Testing Molecular Wires
A Photophysical and Quantum Chemical Assay
Wielopolski, M.
2010, XIII, 182 p., Hardcover
ISBN: 978-3-642-14739-5