Contents of Volume 2

7 Star Formation ... 1
 7.1 Observations of the Regions of Star Formation............... 1
 7.1.1 Introduction... 1
 7.1.2 Observational Data... 2
 7.2 Spherically Symmetric Collapse
 of Interstellar Clouds ... 5
 7.2.1 Heat Balance of an Optically Thin Cloud 5
 7.2.2 Equations for Cloud Collapse 7
 7.2.3 Calculational Results...................................... 10
 7.3 Collapse of Rotating Clouds 14
 7.3.1 Set of Equations and Difference Scheme Properties 15
 7.3.2 Calculational Results...................................... 18

8 Pre-Main Sequence Evolution ... 25
 8.1 Hayashi Phase .. 25
 8.1.1 Nuclear Reactions ... 25
 8.1.2 Non-Ideality of Matter 28
 8.1.3 Evolution of Low-Mass Stars, Minimum
 Mass of a Star on the Main Sequence, Role
 of Various Factors .. 29
 8.1.4 Evolutionary Role of the Mass Loss 31
 8.2 Evolution of Rapidly Rotating Stars on Gravitational
 Contraction Stages ... 32
 8.2.1 On the Distribution of Angular Velocity of Rotation 34
 8.2.2 Method for Evolutionary Calculations 36
 8.2.3 Calculation Results.. 39
 8.3 Models for the Matter Outflow from Young Stars 41
 8.3.1 Outflowing Bipolytropic Models [170] 45
 8.3.2 Outflowing Models for Isentropic Hydrogen
 Stars [179] ... 49
 8.3.3 Models for Outflowing Coronae of Young Stars 54
 8.3.4 On the Phenomenon of Fuor 58
9 Nuclear Evolution of Stars .. 61
 9.1 Sources of Uncertainty in Evolutionary Calculations 62
 9.1.1 Convection ... 62
 9.1.2 Semiconvection .. 62
 9.1.3 Convective Non-Locality and Overshooting 64
 9.1.4 Opacity and Nuclear Reactions 64
 9.1.5 Methods for Calculating Envelope 65
 9.1.6 Other Factors ... 65
 9.2 Evolution of Stars in Quiescent Burning Phases 66
 9.2.1 Iben’s Calculations ... 67
 9.2.2 Paczynski’s Calculations 73
 9.2.3 Evolution of Massive Stars 75
 9.2.4 Evolution of Massive Stars with Mass Loss 83
 9.2.5 CAK Theory ... 94
 9.2.6 Line-Driven Winds in the Presence of Strong Gravitational Fields .. 99
 9.2.7 Calculations with New Opacity Tables 104
 9.3 Evolution with Degeneracy, Thermal Flashes 112
 9.3.1 Core Helium Flash .. 113
 9.3.2 Horizontal Branch ... 114
 9.3.3 Asymptotic Giant Branch 116
 9.3.4 Thermal Flashes in Helium-Burning Shell 121
 9.3.5 The Mass Loss in AGB Stars 124
 9.3.6 Evolution with Mass Loss: From AGB to White Dwarf State .. 126
 9.3.7 On Mixing on the AGB and in Neighbourhoods 132
 9.3.8 Thermal Instability in Degenerate Carbon Core 135
 9.3.9 Convective URCA Shells 136
10 Collapse and Supernovae ... 145
 10.1 Presupernova Models ... 147
 10.1.1 Stellar Cores at Threshold of Hydrodynamical Stability: Energetic Method 147
 10.1.2 Stellar Cores at Thermal Instability Threshold 155
 10.2 Explosions Resulting from the Thermal Instability Development in Degenerate Carbon Cores 160
 10.2.1 Basic Equations .. 160
 10.2.2 Detonation ... 161
 10.2.3 Deflagration .. 161
 10.2.4 Spontaneous Burning and Detonation 163
 10.2.5 Instabilities of Nuclear Flames 164
 10.3 Collapse of Low-Mass Stellar Cores 167
 10.4 Hydrodynamical Collapse of Stellar Cores 171
 10.4.1 Low-Energy Window for Neutrinos 174
10.4.2 Asymmetric Neutrino Emission During Collapse of a Star with a Strong Magnetic Field175
10.4.3 Neutrino Oscillations in Matter ..178
10.4.4 Convective Instability in Collapsing Stellar Cores ..179
10.4.5 Two-Dimensional and Three-Dimensional Calculations of Neutrino Convection180
10.4.6 Explosion of Rapidly Rotating Star ...184
10.4.7 Standing Accretion Induced Instability ...185
10.4.8 Acoustic Explosion Model ..186
10.5 Magnetorotational Model of Supernova Explosion ...187
10.5.1 Mechanism of Magnetorotational Explosion ...187
10.5.2 Basic Equations ..188
10.5.3 Cylindrical Approximation ..190
10.5.4 Calculational Results ..192
10.5.5 Two-Dimensional Numerical Method in MHD ...196
10.5.6 Magnetorotational Explosion of the Initially Uniform Cloud ...199
10.5.7 Magnetorotational Supernova: Quadruple and Dipole Magnetic Configurations201
10.5.8 Development of the Magnetorotational Instability in 2D Simulations ...211
10.5.9 Symmetry Breaking Of the Magnetic Field, Anisotropic Neutrino Emission and High Velocity Neutron Star Formation ...213
10.5.10 A Kick Due to Hydrodynamic Instabilities ...219

11 Final Stages of Stellar Evolution ..221
11.1 White Dwarfs ...222
11.1.1 Case $T = 0$...222
11.1.2 Account for a Finite Value of T and Cooling ...227
11.1.3 Cooling of White Dwarfs Near the Stability Limit with the Inclusion of Heating by Non-Equilibrium β-Processes [34] ...231
11.1.4 On the Evolution of Magnetic Fields in White Dwarfs ...235
11.1.5 Nova Outbursts ...238
11.2 Neutron Stars ...240
11.2.1 Cold Neutron Stars ...242
11.2.2 Hot Neutron Stars ..245
11.2.3 Cooling of Neutron Stars ...249
11.2.4 Magnetic Field Decay in Neutron Stars ...253
11.2.5 Stars with Neutron Cores ...254
11.2.6 Quark stars ...254
11.3 Black Holes and Accretion ...263
11.3.1 Spherically Symmetric Accretion ...264
11.3.2	Accretion at an Ordered Magnetic Field	268
11.3.3	Conical Accretion on to a Rapidly Moving Black Hole	271
11.3.4	Disk Accretion in Binaries	274
11.3.5	Accretion Disc Structure with Optically Thin/Thick Transition	278
11.3.6	Black Hole Advective Accretion Disks with Optical Depth Transition	280
11.3.7	Large-Scale Magnetic Fields Dragging in Accretion Disks	292
11.3.8	Battery Effect in Accretion Disks	296
11.3.9	Screening of the Magnetic Field of Disk Accreting Stars	301
11.3.10	Jet Confinement by Magneto-Torsional Oscillations	304
11.4	Cosmic Gamma Ray Bursts: Observations and Modeling	314
11.4.1	Central Engine of Cosmic Gamma-Ray Bursts	317
11.4.2	Optical Afterglows	320
11.4.3	Short GRB and Giant SGR Bursts	323
11.4.4	High Energy Afterglows (30–10,000 MeV)	325

12 **Dynamic Stability** ..349

12.1	Hierarchy of Time Scales	349
12.2	Variational Principle and Small Perturbations	351
12.2.1	Variational Principle in General Relativity	351
12.2.2	Newtonian and Post-Newtonian Limits	353
12.2.3	Method of Small Perturbations in Newtonian Theory	357
12.3	Static Criteria for Stability	361
12.3.1	Non-Rotating Stars	361
12.3.2	Criteria for Rotating Stars	363
12.3.3	Removal of Degeneracy of Neutral Oscillatory Modes in Rotating Isentropic Stars	364
12.3.4	Numerical Examples [119]	366
12.4	Star Stability in the Presence of a Phase Transition	367
12.4.1	Evaluation of Variations $\delta \varepsilon$ and $\delta^2 \varepsilon$	368
12.4.2	Other Forms of Stability Criterion	372
12.4.3	Rough Test for Stability	373
12.4.4	Derivation of Stability Condition for a Phase Transition in the Center of Star	376
12.5	Dynamic Stabilization of NonSpherical Bodies Against Unlimited Collapse	377
12.5.1	Equations of Motion	378
12.5.2	Dimensionless Equations	379
12.5.3	Numerical Results for the Case $H = 0$	382
12.5.4	Poincaré Section	384
12.6	General Picture	387
13 Thermal Stability ...391
 13.1 Evolutionary Phases Exhibiting Thermal Instabilities391
 13.1.1 Instability in Degenerate Regions391
 13.1.2 Instabilities in the Absence of Degeneracy395
 13.2 Thermal Instability Development in Non-Degenerate Shells396
 13.2.1 Stability of a Burning Shell with Constant Thickness ..396
 13.2.2 Calculations of Density Perturbations [884]398
 13.2.3 A Strict Criterion for Thermal Stability401

14 Stellar Pulsations and Stability ..403
 14.1 Eigenmodes ...403
 14.1.1 Equations for Small Oscillations403
 14.1.2 Boundary Conditions ..407
 14.1.3 p-, g- and f-Modes409
 14.1.4 Pulsational Instability411
 14.2 Pulsations in Stars with Phase Transition413
 14.2.1 Equations of Motion in the Presence of a Phase Transition413
 14.2.2 Physical Processes at the Phase Jump416
 14.2.3 Adiabatic Oscillations of Finite Amplitude417
 14.2.4 Decaying Finite-Amplitude Oscillations418
 14.3 Pulsational Stability of Massive Stars420
 14.3.1 The Linear Analysis420
 14.3.2 Non-Linear Oscillations424
 14.4 On Variable Stars and Stellar Seismology425

References ..429

List of Symbols and Abbreviations ..473

Some Important Constants ...487

Subject Index ...489
Stellar Physics
2: Stellar Evolution and Stability
Bisnovaty-Kogan, G.S.
2011, XXII, 494 p., Hardcover
ISBN: 978-3-642-14733-3