Contents

Part I Torsion Stresses in Ships

1 Torsion Stresses in Ships ... 3
 1.1 Introduction .. 3
 1.2 Torsion Loading of Beam Elements 3
 1.2.1 Direct Torsion Loads .. 3
 1.2.2 Induced Torsion Load 3
 1.3 Variation of Torque and Angle of Twist along
 Beam Length .. 4
 1.3.1 Beams Subjected to Concentrated Torques 4
 1.3.2 Beams Subjected to Uniformly Distributed
 Torsion Loading ... 5
 1.4 Torsion of Uniform Thin Walled Sections 6
 1.4.1 Pure Torsion of Uniform Open
 Thin-Walled Girders ... 6
 1.5 Torsion of Uniform Thin-Walled Closed Sections 9
 1.6 Basic Equations of Torsion of Thin-Walled
 Closed Sections .. 10
 1.6.1 Shear Flow and Stress 10
 1.6.2 Rate of Twist .. 11
 1.7 Torsion of a Uniform Thin-Walled Tube 12
 1.7.1 Angle of Twist ... 12
 1.7.2 Torsion Shear Stress 13
 1.8 Comparison between Open and Closed
 Thin-Walled Sections ... 16
 1.8.1 Circular Section ... 16
 1.8.2 Square Section ... 18
 1.9 Torsion Constant of Uniform Thin-Walled Closed Sections
 with Attached Open Sections 19
2 Torsion Stresses in Thin-Walled Multi-Cell Box-Girders 21
 2.1 Torsion of Uniform Thin-Walled Two-Cell Box-Girders 21
 2.2 The General Case of a Uniform Two-Cell Box Girder 26
 2.3 Torsion Stresses in a Two Identical Cells Box-Girder 29
 2.3.1 Shear Flow q 29
 2.3.2 Shear Stress τ 29
 2.3.3 Rate of Twist θ 30
 2.4 Torsion of Three-Cell Box-Girder 30
 2.5 Torsion of Uniform Thin-Walled Multi-Cell Box-Girder ... 33
 2.6 Combined Open and Closed Thin-Walled Sections 34
 2.6.1 Combined Open Section with One Closed Cell 34
 2.6.2 Combined Open Section with Two Closed Cells 35

3 Torsion Warping Deformations and Stresses 41
 3.1 Torsion of Thin-Walled Variable Section Beams 41
 3.1.1 Free Warping 41
 3.1.2 Constrained Warping 41
 3.1.3 Warping of Thin-Walled Sections 43
 3.1.4 Flexural Warping Stresses 46
 3.1.5 Development of the General Equation of Torsion ... 47
 3.1.6 Solution of the Torsion Equation 54

4 Torsion of Container Ships 65
 4.1 Torsion Loading on Ships 65
 4.2 Torsion Loading of Open-Decked Ships 66
 4.3 Torsion Loading on Catamaran Vessels 70
 4.4 Warping Deformations and Stresses in the Deck Structure of Container Ships 72
 4.5 Torsional Deformation of Ship Hull Girder 72
 4.6 An Approximate Method for Torsion Analysis of Open Deck Vessels 74
 4.7 Calculation of the Shear and Flexural Warping Stresses ... 75
 4.8 Solution of the Torsion Equation 75
 4.8.1 Boundary Conditions 75
 4.8.2 Distribution of Torsional Loading 76
 4.8.3 Solution of the Torsion Equation for Constrained Warping 77
 4.8.4 Calculation of the Sectorial Properties of Ship Section 78
4.9 Total Stress in the Deck Plating of Container Ships due to Hull Girder Bending and Torsional Loading 85
4.9.1 Hull Girder Stresses due to Vertical Bending 86
4.9.2 Horizontal Hull Girder Bending Stresses 87
4.9.3 Local Stresses 87
4.9.4 Flexural Warping Stresses 88
4.9.5 Total Stress Over the Deck Plating 89

5 Sectorial Properties of Thin-Walled Open Sections 91
5.1 Introduction 91
5.2 Sectorial Properties of Thin-Walled Sections 91
5.2.1 Principal Sectorial Properties of Thin-Walled Sections 93
5.2.2 Position of the Shear Center 94
5.2.3 Sectorial Area Diagram 95
5.2.4 Procedure of Calculation 96
5.3 Applications to Some Typical Sections 96
5.3.1 Sectorial Properties for Thin-Walled Sections Free to Warp 96
5.4 Sectorial Properties for a Thin-Walled Section with an Enforced Axis of Rotation 101
5.4.1 A thin-Walled T-Section with an Enforced Axis of Rotation 101
5.4.2 Enforced Center of Rotation for a Thin-Walled Angle Section 102
5.4.3 Enforced Center of Rotation at a Point C on the Opposite Side of a Thin-Walled Asymmetrical Fabricated Section 102

6 General solution of the torsion equation 105

Part II Shear Loading and Stresses in Ships

7 Shear Stresses in Thin-Walled Structures 111
7.1 Basic Principles 111
7.2 Shear Stresses in Beams due to Bending 111
7.2.1 Solid Beams 111
7.2.2 Average Shear Stress 114
7.2.3 Shear Flow and Stress in Thin-Walled Sections 115
7.3 Shear Centre 124
7.4 Shear Deflection ... 127
7.4.1 Shear Deformation 129
7.5 Shear Lag .. 130

8 Shear Flow and Stresses in Thin-Walled Box-Girders 133
8.1 Single Cell Box-Girder 133
8.2 Shear Flow in Asymmetrical Closed Box-Girders
Subjected to a Vertical Shear Force F 135
8.3 Shear Stresses in Thin-Walled Two-Cell Box-Girders 142
8.4 Calculation of the Correcting Shear Flow for 3-Cell
Box-Girders Subjected to Shear Load 146

9 Shear Flow and Stresses in Ships 149
9.1 Introduction ... 149
9.2 Procedure of Calculation of Shear Flow Distribution 149
9.2.1 Ship Section Idealization 149
9.3 Determination of the Effective Thickness 157
9.4 Shear Flow Calculation 157
9.4.1 Procedure of Calculation of Shear Flow Distribution 158
9.4.2 Shear Flow Distribution over a Ship Section of a Two-deck Cargo Ship 160
9.5 Calculation of Shear Stress Distribution 161
9.5.1 Equivalent Stress 161
9.6 Calculation of Shear Stress Distribution over a Ship Section 162
9.6.1 Calculation of Shear Flow Distribution over a Twin Deck Cargo Ship 163
9.7 Shear Flow Distribution over a Catamaran Section 164

10 Calculation of Shear Stresses in Tankers Subjected to Longitudinal Vertical Shear Forces 167
10.1 Coastal Tankers Having One Longitudinal Bulkhead 167
10.2 Calculation of Shear Flow Distribution for Twin Longitudinal Bulkhead Tankers 169
10.3 Shear Load Carried by Longitudinal Bulkheads and Side Shell Plating 173
10.3.1 Sea-Going Tankers with Two Longitudinal Bulkheads ... 173
10.3.2 Coastal Tankers with One Longitudinal Bulkhead 175
10.4 Shear Flow Distribution Over a Ship Section of an Oil Tanker Experiencing a Local Damage in the Shell Plating or Longitudinal Bulkhead .. 176
10.4.1 Introduction .. 176
10.4.2 Shear Stress Distribution Over a Tanker Section Experiencing a Local Damage. 177

10.4.3 Scenarios of Assumed Damage Locations on the Tanker Section 177

11 Shear Loading and Stresses in Bulk Carriers 187

11.1 Introduction 187

11.2 Structural Configuration 187

11.2.1 Upper and Lower Stools of Transverse Bulkheads 188

11.2.2 Double Bottom Structure 189

11.3 Hull Girder Loading 189

11.4 Longitudinal Vertical Shearing Force 190

11.4.1 Stillwater Component (FS) 191

11.5 Wave-Induced Component (FW) 195

11.5.1 The Distribution of the Largest Expected Vertical Wave-Induced Shearing Force 197

11.6 Dynamic Component (FD) 198

11.7 Total Vertical Shearing Force F 200

11.8 Approximate Value to the Maximum Vertical Shear Force 201

11.9 Variation of Various Shear Stress Components with Time 202

11.10 Shear Flow Distribution in Bulk Carriers 202

11.10.1 Structure Idealization 202

11.10.2 Effective Thickness 203

11.10.3 Shear Flow Distribution 204

11.10.4 Shear Stress Distribution 205

11.10.5 Shear Flow Distribution Over the Hopper Tank 205

11.10.6 Shear Flow Distribution Over the Top Wing Tanks 207

Part III Programming Implementation

12 Programming Implementation 213

12.1 Introduction 213

12.2 Program List 214

12.3 Solved Problems 258

13 Problems 265

References 273

Index 275

CV of the Author 277
Torsion and Shear Stresses in Ships
Shama, M.
2011, XXV, 277 p., Hardcover
ISBN: 978-3-642-14632-9