Contents

Part I Torsion Stresses in Ships

1 Torsion Stresses in Ships .. 3
 1.1 Introduction ... 3
 1.2 Torsion Loading of Beam Elements 3
 1.2.1 Direct Torsion Loads ... 3
 1.2.2 Induced Torsion Load ... 3
 1.3 Variation of Torque and Angle of Twist along
 Beam Length ... 4
 1.3.1 Beams Subjected to Concentrated Torques 4
 1.3.2 Beams Subjected to Uniformly Distributed
 Torsion Loading .. 5
 1.4 Torsion of Uniform Thin Walled Sections 6
 1.4.1 Pure Torsion of Uniform Open
 Thin-Walled Girders ... 6
 1.5 Torsion of Uniform Thin-Walled Closed Sections 9
 1.6 Basic Equations of Torsion of Thin-Walled
 Closed Sections ... 10
 1.6.1 Shear Flow and Stress ... 10
 1.6.2 Rate of Twist .. 11
 1.7 Torsion of a Uniform Thin-Walled Tube 12
 1.7.1 Angle of Twist .. 12
 1.7.2 Torsion Shear Stress .. 13
 1.8 Comparison between Open and Closed
 Thin-Walled Sections ... 16
 1.8.1 Circular Section ... 16
 1.8.2 Square Section .. 18
 1.9 Torsion Constant of Uniform Thin-Walled Closed Sections
 with Attached Open Sections .. 19
Contents

2 Torsion Stresses in Thin-Walled Multi-Cell Box-Girders

- 2.1 Torsion of Uniform Thin-Walled Two-Cell Box-Girders 21
- 2.2 The General Case of a Uniform Two-Cell Box Girder 26
- 2.3 Torsion Stresses in a Two Identical Cells Box-Girder 29
 - 2.3.1 Shear Flow q ... 29
 - 2.3.2 Shear Stress τ .. 29
 - 2.3.3 Rate of Twist θ ... 30
- 2.4 Torsion of Three-Cell Box-Girder .. 30
- 2.5 Torsion of Uniform Thin-Walled Multi-Cell Box-Girder 33
- 2.6 Combined Open and Closed Thin-Walled Sections 34
 - 2.6.1 Combined Open Section with One Closed Cell 34
 - 2.6.2 Combined Open Section with Two Closed Cells 35

3 Torsion Warping Deformations and Stresses

- 3.1 Torsion of Thin-Walled Variable Section Beams 41
 - 3.1.1 Free Warping ... 41
 - 3.1.2 Constrained Warping ... 41
 - 3.1.3 Warping of Thin-Walled Sections ... 43
 - 3.1.4 Flexural Warping Stresses ... 46
 - 3.1.5 Development of the General Equation of Torsion 47
 - 3.1.6 Solution of the Torsion Equation .. 54

4 Torsion of Container Ships

- 4.1 Torsion Loading on Ships .. 65
- 4.2 Torsion Loading of Open-Decked Ships .. 66
- 4.3 Torsion Loading on Catamaran Vessels ... 70
- 4.4 Warping Deformations and Stresses in the Deck Structure of Container Ships ... 72
- 4.5 Torsional Deformation of Ship Hull Girder ... 72
- 4.6 An Approximate Method for Torsion Analysis of Open Deck Vessels 74
- 4.7 Calculation of the Shear and Flexural Warping Stresses 75
- 4.8 Solution of the Torsion Equation .. 75
 - 4.8.1 Boundary Conditions .. 75
 - 4.8.2 Distribution of Torsional Loading .. 76
 - 4.8.3 Solution of the Torsion Equation for Constrained Warping 77
 - 4.8.4 Calculation of the Sectorial Properties of Ship Section 78
4.9 Total Stress in the Deck Plating of Container Ships due to Hull Girder Bending and Torsional Loading 85
4.9.1 Hull Girder Stresses due to Vertical Bending 86
4.9.2 Horizontal Hull Girder Bending Stresses 87
4.9.3 Local Stresses ... 87
4.9.4 Flexural Warping Stresses .. 88
4.9.5 Total Stress Over the Deck Plating 89

5 Sectorial Properties of Thin-Walled Open Sections 91
5.1 Introduction ... 91
5.2 Sectorial Properties of Thin-Walled Sections 91
5.2.1 Principal Sectorial Properties of Thin-Walled Sections 93
5.2.2 Position of the Shear Center .. 94
5.2.3 Sectorial Area Diagram .. 95
5.2.4 Procedure of Calculation .. 96
5.3 Applications to Some Typical Sections 96
5.3.1 Sectorial Properties for Thin-Walled Sections Free to Warp 96
5.4 Sectorial Properties for a Thin-Walled Section with an Enforced Axis of Rotation .. 101
5.4.1 A thin-Walled T-Section with an Enforced Axis of Rotation ... 101
5.4.2 Enforced Center of Rotation for a Thin-Walled Angle Section ... 102
5.4.3 Enforced Center of Rotation at a Point C on the Opposite Side of a Thin-Walled Asymmetrical Fabricated Section 102

6 General solution of the torsion equation 105

Part II Shear Loading and Stresses in Ships

7 Shear Stresses in Thin-Walled Structures 111
7.1 Basic Principles .. 111
7.2 Shear Stresses in Beams due to Bending 111
7.2.1 Solid Beams ... 111
7.2.2 Average Shear Stress .. 114
7.2.3 Shear Flow and Stress in Thin-Walled Sections 115
7.3 Shear Centre ... 124
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Shear Deflection</td>
<td>127</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Shear Deformation</td>
<td>129</td>
</tr>
<tr>
<td>7.5</td>
<td>Shear Lag</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>Shear Flow and Stresses in Thin-Walled Box-Girders</td>
<td>133</td>
</tr>
<tr>
<td>8.1</td>
<td>Single Cell Box-Girder</td>
<td>133</td>
</tr>
<tr>
<td>8.2</td>
<td>Shear Flow in Asymmetrical Closed Box-Girders Subjected to a Vertical Shear Force F</td>
<td>135</td>
</tr>
<tr>
<td>8.3</td>
<td>Shear Stresses in Thin-Walled Two-Cell Box-Girders</td>
<td>142</td>
</tr>
<tr>
<td>8.4</td>
<td>Calculation of the Correcting Shear Flow for 3-Cell Box-Girders Subjected to Shear Load</td>
<td>146</td>
</tr>
<tr>
<td>9</td>
<td>Shear Flow and Stresses in Ships</td>
<td>149</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>9.2</td>
<td>Procedure of Calculation of Shear Flow Distribution</td>
<td>149</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Ship Section Idealization</td>
<td>149</td>
</tr>
<tr>
<td>9.3</td>
<td>Determination of the Effective Thickness</td>
<td>157</td>
</tr>
<tr>
<td>9.4</td>
<td>Shear Flow Calculation</td>
<td>157</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Procedure of Calculation of Shear Flow Distribution</td>
<td>158</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Shear Flow Distribution over a Ship Section of a Two-deck Cargo Ship</td>
<td>160</td>
</tr>
<tr>
<td>9.5</td>
<td>Calculation of Shear Stress Distribution</td>
<td>161</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Equivalent Stress</td>
<td>161</td>
</tr>
<tr>
<td>9.6</td>
<td>Calculation of Shear Stress Distribution over a Ship Section</td>
<td>162</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Calculation of Shear Flow Distribution over a Twin Deck Cargo Ship</td>
<td>163</td>
</tr>
<tr>
<td>9.7</td>
<td>Shear Flow Distribution over a Catamaran Section</td>
<td>164</td>
</tr>
<tr>
<td>10</td>
<td>Calculation of Shear Stresses in Tankers Subjected to Longitudinal Vertical Shear Forces</td>
<td>167</td>
</tr>
<tr>
<td>10.1</td>
<td>Coastal Tankers Having One Longitudinal Bulkhead</td>
<td>167</td>
</tr>
<tr>
<td>10.2</td>
<td>Calculation of Shear Flow Distribution for Twin Longitudinal Bulkhead Tankers</td>
<td>169</td>
</tr>
<tr>
<td>10.3</td>
<td>Shear Load Carried by Longitudinal Bulkheads and Side Shell Plating</td>
<td>173</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Sea-Going Tankers with Two Longitudinal Bulkheads</td>
<td>173</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Coastal Tankers with One Longitudinal Bulkhead</td>
<td>175</td>
</tr>
<tr>
<td>10.4</td>
<td>Shear Flow Distribution Over a Ship Section of an Oil Tanker Experiencing a Local Damage in the Shell Plating or Longitudinal Bulkhead</td>
<td>176</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Introduction</td>
<td>176</td>
</tr>
</tbody>
</table>
10.4.2 Shear Stress Distribution Over a Tanker Section Experiencing a Local Damage. 177
10.4.3 Scenarios of Assumed Damage Locations on the Tanker Section 177

11 Shear Loading and Stresses in Bulk Carriers 187
11.1 Introduction 187
11.2 Structural Configuration 187
 11.2.1 Upper and Lower Stools of Transverse Bulkheads 188
 11.2.2 Double Bottom Structure 189
11.3 Hull Girder Loading 189
11.4 Longitudinal Vertical Shearing Force 190
 11.4.1 Stillwater Component (FS) 191
11.5 Wave-Induced Component (FW) 195
 11.5.1 The Distribution of the Largest Expected Vertical Wave-Induced Shearing Force 197
11.6 Dynamic Component (FD) 198
11.7 Total Vertical Shearing Force F 200
11.8 Approximate Value to the Maximum Vertical Shear Force 201
11.9 Variation of Various Shear Stress Components with Time 202
11.10 Shear Flow Distribution in Bulk Carriers 202
 11.10.1 Structure Idealization 202
 11.10.2 Effective Thickness 203
 11.10.3 Shear Flow Distribution 204
 11.10.4 Shear Stress Distribution 205
 11.10.5 Shear Flow Distribution Over the Hopper Tank 205
 11.10.6 Shear Flow Distribution Over the Top Wing Tanks 207

Part III Programming Implementation

12 Programming Implementation 213
 12.1 Introduction 213
 12.2 Program List 214
 12.3 Solved Problems 258

13 Problems 265

References 273

Index 275

CV of the Author 277
Torsion and Shear Stresses in Ships
Shama, M.
2011, XXV, 277 p., Hardcover
ISBN: 978-3-642-14632-9