
Chapter 2
Binary Emission Processes

2.1 General Remarks

Most of nuclei decay by emitting a particle like proton, neutron, electron, positron
or a composite cluster as deuteron, a-particle, Be, C, O, Mg, Ne, Si. Heavy nuclei
can also fission into two fragments with comparable sizes. All these decays are
called binary emission processes and they can be written as follows

PðJiMiÞ ! D1ðJ1M1Þ þ D2ðJ2M2Þ; ð2:1Þ

where JiMi is the initial spin and its projection. We suppose that other quantum
numbers, like parity, are also embedded into this notation. The final spins
Jk, k = 1, 2 satisfy the triangle rule

jJ1 � J2j � Ji� J1 þ J2; ð2:2Þ

and the initial parity equals the product of fragment parities.
As we already pointed out, our presentation concerns the description of decay

processes induced only by the strong interaction. An important feature of these
decays is connected with the large Coulomb barrier preventing the two fragments
from moving apart. In the phenomenological description, we suppose that this
barrier is extended in the internal region, so that the dynamics of the two fragments
is fully described by a potential, defined for all distances. Such interaction is
shown for the proton emission in Fig. 2.1, where it is given the spherical part of
the Woods–Saxon potential, describing proton emission from 131Eu. The energy of
the system (dot-dashed line) is smaller that the height of the barrier, but the two
fragments can penetrate it, due to the very small, but different from zero, wave
function outside the barrier. We will show below, that this property can be
described in terms of the so-called penetrability.

The main difficulty that one encounters when studying decay processes, not
only from an experimental point of view, but also theoretically, is the instability of
the initial nucleus. One may expect that these decay processes cannot be con-
sidered stationary and one has to use the time-dependent Schrödinger equation

D. S. Delion, Theory of Particle and Cluster Emission, Lecture Notes in Physics, 819,
DOI: 10.1007/978-3-642-14406-6_2, � Springer-Verlag Berlin Heidelberg 2010

11



i�h
oUðt; rÞ

ot
¼ HUðt; rÞ: ð2:3Þ

Anyway, due to large Coulomb barriers the probability of a cluster to escape
from nucleus is very small and short lived states actually correspond to very
narrow decay widths of such states, which are called resonant states. For instance,
the shortest measurable half life is about T1/2 = 10-12 s for proton emission, and
the corresponding decay width is, according to the uncertainty relation

DEDt� �h; ð2:4Þ

C*DE = 6.6 9 10-10 MeV. Since the characteristic nuclear time is
TN & 10-22 s, the nucleus lives a long time before decaying in this energy-time
scale and, therefore, the decay process may be considered stationary.

The wave function in the region of a resonance, with the width DE * C, lying
at an energy E(0) can be factorized in terms of the energy depending Lorentzian
distribution as follows [1]

UðE; rÞ ¼ � C=2

p ðE � Eð0ÞÞ2 þ ðC=2Þ2
h iWðrÞ

¼ 1
2pi

1

E � ðEð0Þ � iC=2Þ �
1

E � ðEð0Þ þ iC=2Þ

� �
WðrÞ:

ð2:5Þ

The corresponding evolution in time is given by the Fourier transform, which can
easily be estimated by using the Cauchy theorem
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Fig. 2.1 Spherical part of the
nuclear plus Coulomb inter-
action (solid line) as a func-
tion of the radius in 131Eu.
The Coulomb part (dash line)
and the proton Q-value (dot-
dashed line) are also shown
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Uðt; rÞ ¼
Z1

�1

UðE; rÞe�iEt=�hdE ¼ WðrÞe�iErt=�h; ð2:6Þ

and therefore it has the form of a stationary state, but with a complex energy

Er ¼ Eð0Þ � i

2
C; ð2:7Þ

as first proposed by Gamow in his paper explaining a-decay as a quantum pene-
tration process, thus imposing the probabilistic interpretation of the quantum
mechanics [2]. In this way, a narrow resonant state behaves almost like a bound
state. In the same year, a similar explanation was given by Condon and Gurwey in
Ref. [3].

Gamow put forward this idea, novel for his time and bold even today, that since
the time dependence of the wave function, corresponding to the decaying reso-
nance, should have the stationary form (2.6), the resonance energy could be
considered complex with the form (2.7).

This idea proved to be of great significance in the study of all resonant pro-
cesses. One of its important consequences is that, by going to the complex energy
plane, the theory becomes dubious and difficult, but it has the great feature of
transforming a time dependent process into a stationary one [4].

2.2 Angular Momentum Representation

The general framework to describe emission processes is the stationary scattering
theory. The main tool is the angular momentum representation of solutions. Firstly
we will give a textbook version of the formalism for spherical nuclei emitting
structureless fragments. Then we will generalize the formalism to deformed nuclei
emitting fragments with a given structure.

2.2.1 Spherical Boson Emitters

Let us consider that the fragments are structureless bosons emitted from a spherical
nucleus. The typical case is the a-decay, connecting ground states of even–even
spherical nuclei. The stationary Schrödinger equation describing such a process is
written as follows

��h2

2l
Dþ V0ðrÞ

� �
WðrÞ ¼ EWðrÞ; ð2:8Þ
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where l denotes the reduced mass of the a-daughter system. The potential, V0(r)
between the a-particle and daughter nucleus has two components: the short range
nuclear part VN(r) and the Coulomb interaction VC(r). The wave function can be
expanded in partial waves in terms of spherical harmonics

WðrÞ ¼
X

l

flðrÞ
r

Ylmðr̂Þ; ð2:9Þ

where r ¼ ðr; r̂Þ � ðr; h;/Þ: The spherical harmonics are factorized as follows

Ylnðh;/Þ ¼ HlmðhÞUmð/Þ; Umð/Þ ¼
eim/

ffiffiffiffiffiffi
2p
p ; ð2:10Þ

where each component is orthonormal

Zp

0

H�lmðhÞHl0m0ðhÞsinhdh ¼ dll0

Z2p

0

U�mð/ÞUm0 ð/Þd/ ¼ dmm0 :

ð2:11Þ

The Laplacian in spherical coordinates has the following form

D ¼ 1
r

o2

or2
r � L̂2

r2
; ð2:12Þ

where the angular part of the operator acts on spherical harmonics as follows

L̂2Ylmðh;/Þ ¼ lðlþ 1ÞYlmðh;/Þ: ð2:13Þ

We insert the expansion in partial waves (2.9) in (2.8) and then we multiply it with
Y�lmðh;/Þ: By using the orthogonality of spherical harmonics (2.11), one obtains
the following equations for radial components

d2flðrÞ
dr2

¼ lðlþ 1Þ
r2

þ 2l

�h2 V0ðrÞ � E½ �
� �

flðrÞ: ð2:14Þ

This system of decoupled equations can also be written in terms of the
dimensionless reduced radius q = jr, depending on the momentum j ¼

ffiffiffiffiffiffiffiffiffi
2lE
p

=�h;
as follows

� d2

dq2
þ VlðrÞ

E
� 1

� �
flðrÞ ¼ 0; ð2:15Þ

where we introduced the angular momentum-dependent potential,
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VlðrÞ
E
¼ lðlþ 1Þ

q2
þ V0ðrÞ

E
: ð2:16Þ

Since the nuclear interaction VN is of a finite range, one has VN(r) = 0 beyond
some radius. Therefore at large distances only the spherical Coulomb interaction is
active and the ratio between the interaction potential and emission energy can be
expressed as follows

V0ðrÞ
E
! Z1Z2e2

rE
¼ v

q
; ð2:17Þ

where Zk are the charges of emitted fragments. Here we introduced the Coulomb
parameter (twice the Sommerfield parameter)

v ¼ 2
Z1Z2e2

�hv
; ð2:18Þ

with the asymptotic velocity defined as follows

v ¼
ffiffiffiffiffiffi
2E

l

s
¼ �hj

l
: ð2:19Þ

The independent solutions of the Coulomb equation

� d2

dq2
þ lðlþ 1Þ

q2
þ v

q
� 1

� �
flðrÞ ¼ 0; ð2:20Þ

are the standard regular and irregular Coulomb functions [5]. They are real
functions of q. The regular solution Fl(v, q) vanishes at the origin and increases as
a function of the distance inside the Coulomb barrier, while the irregular solution
Gl(v, q) diverges at the origin but decreases with distance inside the Coulomb
barrier.

At large distances both solutions oscillate, i.e. their asymptotic behaviour is
given by

flðv; qÞ ¼ Flðv; qÞ !q!1 sin q� 1
2

lpþ rl

� �
;

Glðv; qÞ !q!1 cos q� 1
2

lpþ rl

� �
:

ð2:21Þ

where rl is the Coulomb phase shift

rl ¼ arg C lþ 1þ i
v
2

	 

� 1

2
vln 2q; ð2:22Þ

with C being the Euler Gamma-function. In the above definition we also included
the term depending upon the logarithm of the reduced radius.
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If one of the emitted fragments is neutral, like for instance the neutron, then
rl = 0 and the above spherical waves are proportional to spherical Bessel
functions

flðqÞ ¼ qjlðqÞ !q!1 sin q� 1
2

lp

� �

¼ qnlðqÞ !q!1 cos q� 1
2

lp

� �
:

ð2:23Þ

The outgoing/ingoing Coulomb–Hankel waves are defined in terms of the above
Coulomb functions as follows

Hð�Þl ðv; qÞ ¼ Glðv; qÞ � iFlðv; qÞ !q!1 exp �i q� 1
2

lpþ rl

� �� �
: ð2:24Þ

These waves become usual Hankel functions for neutral particles, i.e.

qhð�Þl ðqÞ ¼ q nlðqÞ þ ijlðqÞ½ � !q!1 exp �i q� 1
2

lp

� �� �
: ð2:25Þ

2.2.2 Spherical Fermion Emitters

In the case of fermion (proton or neutron) emission from spherical nuclei the
central potential entering Schrödinger equation (2.8) contains also the spin-orbit
part, i.e.

V0ðr; sÞ ¼ V0ðrÞ þ VsoðrÞl:r; ð2:26Þ

where V0(r) is the central nuclear plus Coulomb potential and r ¼ 2s: The wave
function is expanded

Wðr; sÞ ¼
X

l

fljðrÞ
r

Y
ðlÞ
jmðr̂; sÞ; ð2:27Þ

in terms of spin-orbital harmonics

Y
ðlÞ
jmðr̂; sÞ ¼ Ylðr̂Þ 	 v1

2
ðsÞ

h i
jm
�

X
m1þm2¼m

hlm1;
1
2

m2jjmiYlm1ðr̂Þv1
2m2
ðsÞ; ð2:28Þ

where the bracket symbol denotes Clebsch–Gordan recoupling coefficients cor-
responding to the angular momentum addition j = l + s. By using the same
manipulations as in the previous case one obtains the system of equations for radial
components
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� d2

dq2
þ lðlþ 1Þ

q2
þ V0ðrÞ þ VsoðrÞhl:ri

E
� 1

� �
flj ¼ 0; ð2:29Þ

where

hl:ri ¼ jðjþ 1Þ � lðlþ 1Þ � 3
4
: ð2:30Þ

At large distances the system contains only Coulomb interaction (2.17).

2.3 S-Matrix

In this section we will investigate the so-called scattering states, i.e. real solutions
of the Schrödinger equation with positive energy. The formalism presented below
is common for boson and fermion cases. In order to simplify notations we will use
boson channel notation l. For the fermion emission this index should be replaced
by l ? (lj).

2.3.1 Scattering States

In the external region, where the nuclear interaction vanishes, the solution is a
combination of the Coulomb functions. The standard form that one adopts is the
following

f ðextÞ
l ðE; rÞ�Glðv; qÞsindlðEÞ þ Flðv; qÞcosdlðEÞ

¼ i

2
e�idlðEÞ Hð�Þl ðv; qÞ �SlðEÞHðþÞl ðv;qÞ

h i
:

ð2:31Þ

Notice that this form is valid for spherical emitters, where in each spherical
channel, corresponding to a given angular momentum l, there is an incoming wave

Hð�Þl : Later on, in the Section devoted to the R-matrix method, we will give a more
general expression corresponding to deformed emitters. We will show below that
the phase shift is a real number, so that the S-matrix, defined by

SlðEÞ ¼ e2idlðEÞ; ð2:32Þ

satisfies the unitarity condition

SlðEÞSyl ðEÞ ¼ 1: ð2:33Þ
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To evaluate the phase shift, and therefore the S-matrix, one requires the continuity
of the external and internal wave functions and of the corresponding derivatives at
the point r = R. The internal wave function should be regular in origin

f ðintÞ
l ðr ! 0Þ ! rlþ1: ð2:34Þ

This is achieved through the matching of the internal and external logarithmic
derivatives of the wave function fl(r), i.e.

bðintÞ
l ðRÞ � 1

f ðintÞ
l ðRÞ

df ðintÞ
l ðRÞ

dr
¼ bðextÞ

l ðRÞ � 1

f ðextÞ
l ðRÞ

df ðextÞ
l ðRÞ

dr
: ð2:35Þ

From Eq. 2.31, writing the trigonometric functions in terms of exponentials, one
gets

SlðEÞ ¼ e2idlðE;RÞb
ðintÞ
l ðE;RÞ � DlðE;RÞ þ iPlðE;RÞ

bðintÞ
l ðE;RÞ � DlðE;RÞ � iPlðE;RÞ

: ð2:36Þ

where we have defined

DlðE;RÞ � kR
F0lðv; jRÞ þ iG0lðv; jRÞ
F2

l ðv; jRÞ þ G2
l ðv; jRÞ ¼ ijR

Hð�Þl ðv; jRÞ
h i0

HðþÞl ðv; jRÞ
���

���
2 ;

PlðE;RÞ �
jR

F2
l ðv; jRÞ þ G2

l ðv; jRÞ ¼
jR

HðþÞl ðv; jRÞ
���

���
2;

e2idlðE;RÞ � �Flðv; jRÞ þ iGlðv; jRÞ
Flðv; jRÞ � iGlðv; jRÞ ¼

Hð�Þl ðv; jRÞ
HðþÞl ðv; jRÞ

;

ð2:37Þ

with, e.g. F0lðv; jRÞ � dFlðv; qÞ=dqjq¼jR: We have also used the property that the
Wronskian for Coulomb functions is unity, i. e. F0lðv; qÞGlðv; qÞ � G0lðv; qÞFlðv; qÞ ¼ 1

for all values of q [5]. One notices that dl is real, since the Coulomb functions are real.
Moreover, it vanishes inside the barrier for narrow resonant states due to very small values

of the regular Coulomb function, i.e. in this region it is e2idlðE;RÞ 
 1:

2.3.2 Resonances

Close to the resonant energy En one can expand the logarithmic derivative as
follows

bðintÞ
l ðE;RÞ 
 blðEn;RÞ þ b0lðEn;RÞðE � EnÞ; ð2:38Þ
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and the S-matrix becomes

SnlðE;RÞ ¼ e2idlðE;RÞE � En � DnlðE;RÞ � i
2CnlðE;RÞ

E � En � DnlðE;RÞ þ i
2CnlðE;RÞ

ð2:39Þ

where we introduced the energy shift and decay width as

DnlðE;RÞ �
DlðE;RÞ � blðEn;RÞ

b0lðEn;RÞ
;

CnlðE;RÞ � �
2PlðE;RÞ
b0lðEn;RÞ

:

ð2:40Þ

In order to estimate the derivative of the logarithmic derivative with respect to
the energy we consider two internal solutions of Eq. 2.65, namely f1(r) : fl(E1, r)
and f2(r) : fl(E2, r). Since they obey the Schrödinger equation one gets

f2ðrÞ
d2f1ðrÞ

dr2
� f1ðrÞ

d2f2ðrÞ
dr2

¼ 2l

�h2 ðE2 � E1Þf1ðrÞf2ðrÞ: ð2:41Þ

By integrating both sides from 0 to R, dividing by f1(R)f2(R) and using the fact that
the internal solution should be regular in origin, i.e. fl(E, r = 0) = 0, one obtains

R

f1ðRÞ
df1ðRÞ

dr
� R

f2ðRÞ
df2ðRÞ

dr
¼ bðE1;RÞ � bðE2;RÞ

¼ ðE2 � E1Þ
2lR

�h2f1ðRÞf2ðRÞ

ZR

0

f1ðrÞf2ðrÞdr:

ð2:42Þ

In the limit E2 ? E1 = E and normalizing to unity the internal wave function one
gets

� d

dE
blðE;RÞ ¼

2lR

�h2f 2
l ðE;RÞ

� c�2
l ðE;RÞ; ð2:43Þ

where we introduced the reduced width cl. Thus, the decay width in Eq. 2.40
acquires the standard form, as a product between the penetrability and reduced
width squared, i.e.

CnlðE;RÞ ¼ 2PlðE;RÞc2
l ðEn;RÞ; ð2:44Þ

which is a real positive number. We will see later that the same factorization of the
decay width is also given by the R-matrix theory [6].

According to Eq. 2.39 the maximum value of the S-matrix occurs when the

denominator is a minimun, i.e. for the energy E ¼ Eð0Þnl ðE;RÞ ¼ En þ DlðE;RÞ:
In terms of this energy the S-matrix reads
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SnlðE;RÞ ¼ e2idlðE;RÞE � Eð0Þnl ðE;RÞ � i
2CnlðE;RÞ

E � Eð0Þnl ðE;RÞ þ i
2CnlðE;RÞ

: ð2:45Þ

Physically, this equation is interpreted as the S-matrix corresponding to a reso-

nance with energy Eð0Þnl ðE;RÞ and width Cnl(E, R).
So far we have been careful to show the dependence upon E and R of the

parameters entering the S-matrix, i.e. Eð0Þnl ðE;RÞ and Cnl(E, R). However it has to
be stressed that the dependence upon R is artificial, since the theory should not
depend upon the matching radius if this point is properly chosen, i.e. beyond the
range of the nuclear force. The dependence upon the energy, based in the
approximation (2.38), is a more serious point. Wigner realized that this depen-
dence is irrelevant in the analysis of observable resonances, since in that case the
width is so small that in the energy range of the resonance C can be considered a
constant. In the rest of this section we will only consider narrow resonances. That
is the S-matrix has the form

SnlðEÞ ¼ e2idl
E � Eð0Þnl � i

2Cnl

E � Eð0Þnl þ i
2Cnl

¼ e2idl 1� iCnl

E � Eð0Þnl þ i
2Cnl

" #
: ð2:46Þ

where Eð0Þnl and Cnl are real positive numbers.
It is important to keep in mind that Eq. 2.46 was obtained by assuming that Cnl

is small and therefore it is only valid for narrow (and therefore isolated)
resonances.

2.3.3 Poles of the S-Matrix

The poles of the S-matrix characterize the type of the resonant state. From
Eq. 2.46 one sees that the energies and widths of narrow resonances can be
obtained by calculating the complex poles of the S-matrix. But this is a very

difficult task, because Cl can be many orders of magnitude smaller than Eð0Þl and

the computation of the complex energy Eð0Þl þ iCl=2 would require a very high
precision. We will come back to this problem in Sect.2.4. But still one can
compute the energy of the resonance as the pole of the S-matrix and then the width
as the corresponding residues. To see this, we first notice that the number dl (called
‘‘hard sphere phase shift’’) represents the contribution of the continuum back-
ground to the S-matrix and its value is negligible close to a narrow resonance.
Therefore, the residues of the S-matrix at the pole n is

Res½SnlðEÞ� ¼ lim
E!Eð0Þnl �

i
2Cnl

E � Eð0Þnl þ
i

2
Cnl

� �
SnlðEÞ ¼ �iCnl; ð2:47Þ
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which is an important result since it shows that if the resonance is isolated then the
residues of the S-matrix is a pure imaginary number. On the contrary, for reso-
nances that are not isolated the residua are generally complex quantities [7].

Let us mention that by exchanging HðþÞl and Hð�Þl between them in Eq. 2.31 one
obtains a symmetric pole. Thus, by writing

jnl ¼ jð0Þnl � iknl; ð2:48Þ

where knl = Cnl/2 the poles of the S-matrix are [8, 9]:

(a) decay states (Gamow resonances) with jð0Þnl [ 0; knl [ 0 (dark squares in
Fig. 2.2);

(b) capture states with jð0Þnl \0; knl [ 0 (open squares in Fig. 2.2).

Let us mention that for negative energies the S-matrix has only imaginary
poles, corresponding in (2.25) to the following asymptotics

flðqÞ ! exp½�ðqþ 1
2

lpÞ�; ð2:49Þ

These are

(c) bound states, for which jð0Þnl ¼ 0 and knl \ 0 (dark circles in Fig. 2.2);

(d) antibound states with jð0Þnl ¼ 0; knl [ 0 (open circles in Fig. 2.2).

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Fig. 2.2 Poles of the
S-matrix: bound states (dark
circles), antibound states
(open circles), decay states
(dark squares), capture states
(open squares)
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From Eq. 2.46 one also obtains

dnl ¼ arctan
Cnl=2

Eð0Þnl � E
; ð2:50Þ

which shows that a resonance appears when the phase shift increases as it
approaches the value dnl = p/2 as a function of the energy assuming, also here,
that the hard sphere phase shift is negligible. This criterion is often used to
determine the energies of resonances.

Equation 2.50 allows one to evaluate the decay width by using still another
expression, namely

Cnl ¼ �2
octg dnl

oE

� ��1

E¼E0
nl

: ð2:51Þ

Finally, it is worthwhile to mention that from Eq. 2.46 the cross section corre-
sponding to the scattering of the particle at the energy of the resonance acquires
the form

rnlðEÞ ¼ ð2lþ 1Þp
k2

C2
nl

ðE � Eð0Þnl Þ
2 þ ðCnl=2Þ2

: ð2:52Þ

This formula was derived by G. Breit and E. P. Wigner [10] to explain the capture of
slow neutrons. It is one of the most successful expressions written in quantum
physics, as shown by its extensive use in the study of resonances ever since. It was by
comparing with the experiment Wigner interpreted the number C as the width of the
resonance. Since the imaginary part of the S-matrix pole is - C/2 (Eq. 2.46), this
interpretation coincided with the Gamow interpretation of the width.

2.4 Gamow States

The states with complex energies E ¼ Eð0Þl � i
2Cl; corresponding to the poles of the

type (a) and (b), are called Gamow outgoing/ingoing states. According to the
representation of the S-matrix (2.45) the scattering state (2.31) is given by

f ðextÞ
l ðrÞ� E � Eð0Þl þ

i

2
Cl

� �
Hð�Þl ðv; qÞ

� E � Eð0Þl �
i

2
Cl

� �
Hð�Þl ðv; qÞ;

ð2:53Þ

and the first term vanishes. Thus, the Gamow states are eigenstates of the sta-
tionary system of equations (2.14) with the following asymptotics

f ðextÞ
l ðrÞ ¼ NlH

ð�Þ
l ðv; qÞ: ð2:54Þ
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We can now formulate the complex eigenvalue problem for the Gamow states.

The internal component of the relative wave function f ðintÞ
l ðrÞ should be regular in

origin (2.34). The continuity of logarithmic derivatives for the internal and
external wavefunction component of the resonant type (2.54) at some large radius
R, where the interaction is given by the spherical Coulomb potential, can be
fulfilled only for a discrete set of complex values of the wave number jnl (2.48),
given by the above cases (a) and (b).

The angular momentum representation can be generalized for deformed nuclei,
where both emitted fragments have structure and they can be left in some excited
states. The dynamics of the decaying system is described by the following sta-
tionary Schrödinger equation

HWJiMiðx1; x2; rÞ ¼ EWJiMiðx1; x2; rÞ: ð2:55Þ

We consider that the Hamiltonian describing binary emission is given by the
following general ansatz

H ¼ ��h2

2l
Dr þH1ðx1Þ þH2ðx2Þ þ Vðx1; x2; rÞ; ð2:56Þ

where xk denote the internal coordinates of fragments and r the distance between
them. We denote by V the inter-fragment potential and by Hk the Hamiltonians
describing the internal motion of emitted fragments, i.e.

HkUJkMkðxkÞ ¼ EkUJkMkðxkÞ;¼ 1; 2; ð2:57Þ

where Ek are the excitation energies of emitted fragments and UJkMkðxkÞ their
eigenstates, satisfying the orthonormality condition

hUJkMk jUJ0kM0k
i ¼ dJkJ0k

dMkM0k
: ð2:58Þ

The external solution can be written as a superposition of different outgoing
channels c:(J1, J2, Jc, jc), describing all possible binary splittings, i.e.

WJiMiðx1; x2; rÞ ¼
X

c

WðcÞJiMi
ðx1; x2; rÞ ¼

X
c

fcðrÞ
r

Y
ðcÞ
JiMi
ðx1; x2; r̂Þ; ð2:59Þ

where, with r̂ � ð/; hÞ; we introduced the core-angular harmonics

hx1; x2; r̂jci � Y
ðcÞ
JiMi
ðx1; x2; r̂Þ ¼ UJ1ðx1Þ 	 UJ2ðx2Þ½ �Jc

	Yjcðr̂Þ
n o

JiMi

: ð2:60Þ

As usually, the symbol [... 	 ...]JM denotes the angular momentum coupling.
Thus, the total spin is decomposed in each channel as follows

Ji ¼ Jc þ jc

Jc ¼ J1 þ J2:
ð2:61Þ
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These functions are also introduced within the R-matrix theory [6, 11, 12], were
they are called surface functions. Obviously when one of the emitted fragments is
structureless, like for instance in proton or a emission, one has UJ2ðx2Þ ¼ 1: The
harmonics Yjcmcðr̂Þ describe the angular relative motion and they coincide with
usual spherical harmonics (2.10) in the case both fragments are bosons. Here jc is
an integer number. They coincide with spin-orbital harmonics (2.28) for the fer-
mion (proton or neutron) emission, where jc is half integer.

Due to the orthonormality of their components, the core-angular harmonics are
mutually orthonormal, i.e.

hcjc0i ¼ hYðcÞJiMi
jYðc

0Þ
JiMi
i ¼ dcc0 : ð2:62Þ

We split the inter-fragment potential into a spherical and a deformed component,
i.e. V = V0 + Vd. By projecting out a given channel c and taking into account the
orthonormality condition (2.62) one obtains the coupled channels system of
equations for the radial wave functions

d2fcðrÞ
dr2

¼ lcðlc þ 1Þ
r2

þ 2l

�h2 V0ðrÞ � Ec½ �
� �

fcðrÞ þ
2l

�h2

X
c0

V ðcc0Þ
d ðrÞfc0 ðrÞ; ð2:63Þ

where the channel energy is defined as Ec = E - E1 - E2 and

V ðcc0Þ
d ðrÞ ¼ hYðcÞJiMi

jVdjYðc
0Þ

JiMi
i: ð2:64Þ

At large distances only the spherical component is dominant and therefore the
above system becomes decoupled

� d2

dq2
c

þ lcðlc þ 1Þ
q2

c

þ V0ðrÞ
Ec
� 1

� �
fcðrÞ ¼ 0; ð2:65Þ

in terms of the reduced radius for a given channel ‘‘c’’ qc = jcr, where momentum
is defined by jc ¼

ffiffiffiffiffiffiffiffiffiffi
2lEc
p

=�h: Here one has only the spherical Coulomb interaction
(2.17) and the system (2.65) has a similar to (2.20) form for each angular
momentum in the channel c, i.e.

� d2

dq2
c

þ lcðlc þ 1Þ
q2

c

þ vc

qc
� 1

� �
fcðvc; qcÞ ¼ 0; ð2:66Þ

where the channel Coulomb parameter is given by

vc ¼ 2
Z1Z2e2

�hvc
; ð2:67Þ

with the asymptotic channel velocity defined as follows

vc ¼
ffiffiffiffiffiffiffiffi
2Ec

l

s
¼ �hjc

l
: ð2:68Þ
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The outgoing/ingoing solutions of Eq. 2.66 are the standard Coulomb–Hankel
waves (2.24). Thus, the general solution is an eigenstate of the stationary system of
equations (2.63) with the following asymptotics

fcðrÞ !r!1 f ðextÞ
c ðrÞ; ð2:69Þ

where f ðextÞ
c ðrÞ satisfies Eq. 2.66, i.e. it is a linear combination of (2.24). As in the

spherical case, by denoting with f ðintÞ
c ðrÞ the internal components of the relative

wave function regular in the origin, the continuity of the logarithmic derivatives of
the wavefunction components at some large radius R, where the interaction
becomes spherical, is given by a similar to Eq. 2.35 condition for each channel, i.e.

bðintÞ
c ðRÞ � 1

f ðintÞ
c ðRÞ

df ðintÞ
c ðRÞ

dr
¼ bðextÞ

c ðRÞ � 1

f ðextÞ
c ðRÞ

df ðextÞ
c ðRÞ

dr
: ð2:70Þ

It can be fulfilled only for a discrete set of complex values of the wave number jn

for the above (a)–(d) cases.
As in the spherical case, the cases (a) and (b) are respectively satisfied by the

following asymptotics

f ðextÞ
c ðrÞ ¼ NcHð�Þlc

ðvc; qcÞ; ð2:71Þ

where Nc are the scattering amplitudes in the channel c.

2.5 Decay Width and Half Life

For Gamow states (a) the imaginary part of j according to (2.7) is negative and the
modulus of the outgoing wave increases at large distances. By considering Eqs. 2.6
and 2.7, one obtains that the matter density decreases according to the
following rule

Uðt; rÞj j2¼ WðrÞj j2e�Ct=�h; ð2:72Þ

which is nothing else but the well-known exponential decay law, giving the
number of nuclei at a certain moment

NðtÞ ¼ Nð0Þe�kt; ð2:73Þ

where the decay constant is given by k ¼ C=�h: The half life is defined as the
interval of time satisfying the condition N(T) = N(0)/2, i.e.

T1=2 ¼
�hln 2
C
¼ 4:56� 10�22

C
; ð2:74Þ

where C is in MeV and T in seconds.
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The decay width can be determined, in principle, by solving the coupled
channels system (2.63) with the matching conditions (2.70) in the complex energy
plane. The evaluation of the S-matrix poles can be performed by using the same
procedure as the one used to evaluate bound states. The difference is that, now, one
has to introduce the outgoing boundary condition given by Eq. 2.71. There are
standard computer codes to do this, e.g. the codes of Refs. [13, 14]. These codes
evaluate the energies corresponding to all poles of the S-matrix. The real energies
define either the bound, or the antibound states. The complex energies, which are
close to the real energy axis correspond to narrow resonances and therefore they
accept the interpretation given above to such energies. That is, the real part is the
position of the decaying resonance and minus twice the imaginary part is
the corresponding width. However, in observable emission processes, the value of
the imaginary part is usually much smaller, in absolute value, than the corre-
sponding real part and its calculation is a difficult numerical task. But even if this
calculation is possible, we want to stress that not always does the imaginary part of
the energies correspond to the width of a resonance.

There is also an equivalent way to determine the width. Let us consider the
stationary Schrödinger equation and its complex conjugate

E � i

2
C

� �
W ¼ ��h2

2l
r2 þ V

� �
W

E þ i

2
C

� �
W� ¼ ��h2

2l
r2 þ V

� �
W�:

ð2:75Þ

One multiplies to the left the first relation by W* and the second one by W. By
substracting the two equalities one obtains

CW�W ¼ �h2

2li
W�r2W�Wr2W�
� 

: ð2:76Þ

Here we considered that the potential operator V is Hermitian and therefore the
corresponding difference vanishes after the volume integration. We then integrate
this relation over internal variables x1, x2 and the relative coordinate r inside a
sphere with a large radius. By transforming the right hand side term into a surface
integral one obtains the following expression of the decay width

C ¼ �h
H
Jðr̂Þdr̂R
PðrÞdr

: ð2:77Þ

Here we introduced the internal probability

PðrÞ ¼
Z

dx1

Z
dx2 Wj j2; ð2:78Þ

and the probability flux
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Jðr̂Þ ¼ �h

2li

Z
dx1

Z
dx2 W�rW�WrW�ð Þr2: ð2:79Þ

We consider that the wave function is normalized to unity inside the considered
sphere. In this way we suppose that the two fragments exist with the unity
probability inside this volume. This statement is in an aparent contradiction with
the emission process, leading to a decrease of the internal probability. Anyway,
due to the very small value of the decay width compared with the emission energy
one can use this condition, for a relative large time interval compared with the
characteristic nuclear time [15].

On the surface of the sphere the gradient operator acts only on the radial
direction r ! er

o
or; i.e.

Jðr̂Þ ! �h

2li

Z
dx1

Z
dx2 W�

oW
or
�W

oW�

or

� �
r2: ð2:80Þ

Thus, by using the channel expansion (2.59) and

oWðcÞ

or
! ijcW

ðcÞ; ð2:81Þ

the angular distribution becomes

Cðr̂Þ ¼ �hJðr̂Þ ¼ �h
X
cc0

vc lim
r!1

r2
Z

dx1

Z
dx2W

ðcÞ�Wðc
0Þ: ð2:82Þ

By using the orthogonality of the core-angular harmonics (2.62) the decay width,
proportional to the total probability flux through the surface of this sphere,
becomes

C ¼
I

Cðr̂Þdr̂ ¼ �h
X

c

vc lim
r!1

I
r2dr̂

Z
dx1

Z
dx2jWðcÞj2: ð2:83Þ

By using the asymptotic relation (2.71) and the fact that the modulus of the
outgoing Coulomb–Hankel wave function is unity, as seen from Eq. 2.24, one
obtains

C ¼
X

c

�hvcjNcj2 �
X

c

Cc: ð2:84Þ

Thus, the total decay width can be written as a sum of partial decay widths
corresponding to the considered channels. The equality between internal and
external radial wave functions together with Eq. 2.71, i.e.

f ðintÞ
c ðEc;RÞ ¼ f ðextÞ

c ðEc;RÞ ¼ NcHðþÞlc
ðvc; jcRÞ; ð2:85Þ

determines the scattering amplitude
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Nc ¼
f ðintÞ
c ðEc;RÞ

HðþÞlc
ðvc; jcRÞ

: ð2:86Þ

Notice that Nc does not depend upon R, since both internal and external compo-
nents satisfy the same Schrödinger equation. By inserting this value in the
expression of the decay width (2.83) one obtains the following relation

Cc ¼ �hvc
f ðintÞ
c ðEc;RÞ

HðþÞlc
ðvc; jcRÞ

�����

�����
2

¼ 2PlcðEc;RÞc2
cðEc;RÞ; ð2:87Þ

where vc is the Coulomb parameter corresponding to the resonant complex
energy. Here we introduced the standard penetrability and reduced width
squared [6]

PlcðEc;RÞ ¼
jcR

HðþÞlc
ðvc; jcRÞ

���
���
2;

c2
cðEc;RÞ ¼

�h2

2lR
jf ðintÞ

c ðEc;RÞj2:

ð2:88Þ

The form of the above decay width at the energy E = Ec, in terms of the
penetrability and reduced width, is the same as in Eq. 2.44.

2.6 Decay Rules for the Half Life

According to the factorization of the decay width (2.87) and the above relation for
the penetrability (2.88) the half life (2.74) is proportional to the modulus squared
of the Coulomb–Hankel function inside the barrier. In this region it practically
coincides with the irregular Coulomb function and has a very simple WKB ansatz,
given in Appendix (14.2) by

HðþÞl ðv;qÞ 
 ctg að Þ1=2exp v a� sin a cos að Þ½ �Cl

¼ 1
x
� 1

� ��1=4

exp v arccos
ffiffiffi
x
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p	 
h i
Cl

� HðþÞ0 ðv; qÞCl

ð2:89Þ

where, with the external turning point Rb = Z1Z2e2/E and barrier energy
V0 = Z1Z2e2/R, we introduced the following notations
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cos2 a ¼ x ¼ q
v
¼ R

Rb
¼ E

V0

Cl ¼ exp
lðlþ 1Þ

v

ffiffiffiffiffiffiffiffiffiffiffi
v
q
� 1

r� �
:

ð2:90Þ

Thus, the logarithm of the half life, corrected by the exponential centrifugal
factor Cl defined by the second line of this relation, should be proportional to the
Coulomb parameter, i.e.

log10Tred ¼ a0vþ b0; ð2:91Þ

where we defined the reduced half life by

Tred ¼
T1=2

C2
l

¼ ln2
vl

HðþÞ0 ðv; qÞ
f ðintÞ
l ðRÞ

�����

�����
2

: ð2:92Þ

This relation is also called Geiger–Nuttall law, discovered in 1911 [16, 17] for
a-decay between ground states (where the angular momentum carried by the
a-particle is l = 0) and it can be written as follows

log10T1=2 ¼ a
Zffiffiffiffiffiffi
Qa
p þ b; ð2:93Þ

where Z is the charge of the left daughter nucleus and Qa the Q-value of the
a-particle. As we pointed out the explanation of this law was given by G. Gamow
in 1928 [2], in terms of the quantum-mechanical penetration of the Coulomb
barrier, given by the first line of Eq. 2.88. This quantity is characterized by the
Coulomb parameter, which is proportional to the ratio Z=

ffiffiffiffiffiffi
Qa
p

:
A special situation occurs in the case of proton emission, when the angular

momentum of the emitted proton in general is different from zero. The half lives
systematics for known proton emitters [18, 19, 20] is given in Fig. 2.3a. The
picture becomes much simpler for the reduced half life (2.92) in Fig. 2.3b.

The Geiger–Nuttall law for proton emitters can be reproduced by the formula

log10TðkÞred ¼ akðv� 20Þ þ bk;

a1 ¼ 1:31; b1 ¼ �2:44; Z\68

a2 ¼ 1:25; b2 ¼ �4:71; Z [ 68;

ð2:94Þ

where k = 1 corresponds to the upper line in Fig. 2.3b. The standard errors are
r1 = 0.26 and r2 = 0.23, corresponding to a mean factor less than two. Here we

considered the geometrical radius, i.e. R ¼ 1:2ðA1=3
D þ 1Þ: We will give in the next

Section the explanation for this specific form of the Geiger–Nuttall law for proton
emitters.

The two-proton emission was predicted in 1960 [21], but at the moment, the
experimental material consists of few cases only. In Fig. 2.4, it is shown the
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logarithm of the half life versus the Coulomb parameter, by considering a
di-proton emission.

The a-decays between ground states are characterized by a remarkable regu-
larity, especially for transitions between ground states of even–even nuclei.
The logarithm of half lives along various isotopic chains lie on separate lines, as it
is shown in Fig. 2.5. This feature is known as the Viola–Seaborg rule [22], i.e.
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log10T1=2 ¼
a1Z þ a2ffiffiffiffiffiffi

Qa
p þ b1Z þ b2; ð2:95Þ

and it is connected with different a-particle reduced widths, multiplying the
penetrability in (2.87), as will be shown latter. Still in doing systematics along
neutron chains, there are important deviations with respect to this rule, as for
instance in a-decay from odd mass nuclei, and this feature is strongly connected
with nuclear structure details.

By using Eq. 2.89 a semi-empirical a-decay universal law for even–even
emitters can be written as follows

log10T1=2 ¼ �log10Pa � 20:446þ CðZ;NÞ

�log10Pa ¼ AðZ;NÞ
ffiffiffiffiffiffiffiffiffiffiffi

AD

APQa

s
½arccos

ffiffiffiffi
X
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1� XÞ

p
�

X ¼ Rt

Rb
; Rt ¼ 1:2249ðA1=3

D þ 41=3Þ; Rb ¼
2ZDe2

Qa
;

ð2:96Þ

where the functions A(Z, N) and C(Z, N) in terms of the parent proton and neutron
numbers are given in Ref. [23].

In Ref. [24] a simpler universal law for even–even a-emitters is given by

log10T1=2 ¼ 9:54
Z0:6

Dffiffiffiffiffiffi
Qa
p � 51:37: ð2:97Þ

Recently in Ref. [25] another type of law, taking into account all relevant
dependencies, was proposed
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log10T1=2 ¼ aþ b
A1=6Z1=2

l
þ c

Zffiffiffiffiffiffi
Qa
p þ d

A1=6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Qa

þ e½ð�Þj � 1�; ð2:98Þ

where A and Z are the parent mass and charge numbers respectively, with different
sets of parameters for even–even, odd–odd, even–odd and odd–even a-emitters.

Viola–Seaborg rule can be generalized for heavy-cluster decays [26], as it is
shown in Fig. 2.6. Here, the angular momenta carried by emitted fragments are
zero. Thus, a similar to Eq. 2.96 universal law for the heavy cluster emission
P ? D + C is given by the following ansatz

log10T1=2 ¼ �log10PC � 22:169þ 0:598ðAC � 1Þ

�log10PC ¼ 0:22873
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lZDZCRb

p
½arccos

ffiffiffiffi
Y
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yð1� YÞ

p
�; l ¼ ADAC

AP

Y ¼ Rt

Rb
; Rt ¼ 1:2249ðA1=3

D þ A1=3
C Þ; Rb ¼ 1:43998

ZDZC

Q
: ð2:99Þ

By using the expansion in power series of cos a in Eq. 2.89, a simplified version
of the above law was recently proposed in Ref. [27], namely

log10T1=2 ¼ av0 þ bq0 þ c; ð2:100Þ

in terms of the following two variables

v0 ¼ ZDZC

ffiffiffiffiffiffiffiffiffi
A=Q

p

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZDZCAðA1=3

D þ A1=3
C Þ

q
; A ¼ ADAC

AP
:

ð2:101Þ
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In Ref. [28] it was proposed the generalization of the Viola–Seaborg rule for the
heavy cluster emission

log10T1=2 ¼ a1
ZDZCffiffiffiffi

Q
p þ a2ZDZC þ b2 þ c2; ð2:102Þ

with the following set of parameters

a1 ¼ 1:517; a2 ¼ 0:053; b2 ¼ �92:911; c2 ¼ 1:402;

where c2 is the blocking parameter for odd-mass nuclei.
Finally, let us mention that it is not possible to derive a Viola–Seaborg rule

for cold fission fragments. This feature was evidenced in Ref. [29] by using the
Two Center Shell Model described in Sect.12.2. Here, the energy surface of the
fissioning system is computed within the liquid drop model plus shell correc-
tions in terms of several coordinates: the distance between emitted fragments,
mass asymmetry, deformations and neck coordinate. The double magicity of
4He and 208Pb leads to very pronounced valleys of the total energy surface with
a constant mass asymmetry during the whole a-decay of cluster emission pro-
cess, respectively. Thus, the penetration has a simple expression given by Eq.
(2.88), leading to the Viola–Seaborg rule, as we will show in the next section.
On the contrary, the cold fission path proceeds through a sadle point of the
potential energy surface, close to the double magic nucleus 132Sn, but the mass
asymmetry changes during the fission process after this point and the maximum
yield corresponds to a different partition. The penetration given by the semi-
classical approach (5.2), is computed along the fission path and obviously the
half life has a more complex structure which does not satisfy the Viola–Seaborg
rule.

Thus, one concludes that all cold emission processes have a common physical
root, namely the cold rearrangement of nucleons during the splitting process to a
more stable di-nuclear configuration in which one of fragments has a double-
magic structure.

2.7 Decay Rule for the Reduced Width

The Viola–Seaborg rule (2.95) has a simple explanation in terms of the following
schematic cluster-daugher potential [30]

VðrÞ ¼ �hx
bðr � r0Þ2

2
þ v0; r� rB

¼ ZDZCe2

r
; r [ rB;

ð2:103Þ

plotted in Fig. 2.7 for a particular value r0 = 0.
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By considering Q-value as the first eigenstate in a spherical shifted harmonic
oscillator well (see Appendix (14.8)), together with the continuity condition at the
top of the barrier rB, i.e.

Q� v0 ¼
1
2
�hx

�hx
bðrB � r0Þ2

2
þ v0 ¼

ZDZCe2

rB
;

ð2:104Þ

one obtains the following relation

�hx
bðrB � r0Þ2

2
¼ VfragðrBÞ þ

1
2
�hx; ð2:105Þ

where we introduced the so called fragmentation (or driving) potential as the
difference between the Coulomb barrier and Q-value

VfragðrBÞ ¼
ZDZCe2

rB
� Q: ð2:106Þ

Let us stress on the fact that the above driving potential is a rough estimate of the
interaction responsible for the emission process within the two potential model
described in Sect. 4.6 in Chap. 4 by Eq. 4.51, i.e. the difference between the
dashed and solid lines in Fig. 2.7. As we will show in that Section, this interaction
connects the initial bound state to the final state in continuum.

According to Eq. 2.87 the logarithm of the decay width is a sum of two
components
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Fig. 2.7 The a-core potential
(2.103) with r0 = 0,
v0 = -25 MeV (solid line)
and its barrier value (dashed
line). Q-value is denoted by a
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log10 C ¼ log10 2PðrBÞ þ log10c
2ðrBÞ: ð2:107Þ

The first component, in the above relation, contains the logarithm of the
Coulomb–Hankel function inside the Coulomb barrier which, according to
Eq. 2.89, is proportional to the Coulomb parameter v. The second part contains the
reduced width squared which, according to Eq. 2.88, is proportional to the mod-
ulus of the internal wave function squared. For a shifted harmonic oscillator well,
one obtains (see Appendix (14.8)) |fint|

2 = A2exp[-b(r - r0)2] and

log10 c2ðrBÞ ¼ �
log10e2

�hx
VfragðrBÞ þ log10

�h2A2

2lerB
: ð2:108Þ

Let us stress on the fact that the above relation does not depend upon the radius r0.
In Fig. 2.8 we plotted the logarithm of the experimental reduced width squared

by using Eq. (2.108) versus the neutron number by different open symbols, cor-
responding to five different regions of even–even a emitters, namely

ð1Þ Z\82; 50�N\82 ðstarsÞ;
ð2Þ Z\82; 82�N\126 ðopen crossesÞ;
ð3Þ Z 82; 82�N\126 ðopen circlesÞ;
ð4Þ Z 82; 126�N\152 ðopen squaresÞ;
ð5Þ Z 82; N 152 ðopen trianglesÞ:

ð2:109Þ

In our calculations we used the value of the touching radius, i.e.

rB ¼ 1:2ðA1=3
D þ R1=3

C Þ:
By dark circles in Fig. 2.8, it is given the linear fit of the logarithm of the

reduced width squared, in terms of the fragmentation potential (2.106), separately

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

60 80 100 120 140 160 180

Fig. 2.8 The logarithm of
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each region
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for each region. In order to see this dependence better, in Fig. 2.9 it is given the
logarithm of the experimental reduced width versus the fragmentation potential
(2.106). Indeed, one sees a nice linear dependence for the regions 1–4, because
they contain long isotopic chains, while in the last region 5 one has not more than
two isotopes/chain. This is the reason why, except for the last region 5, the reduced
width decreases with respect to the fragmentation potential, according to the
theoretical prediction given by Eq. 2.108.

In this way one obtains that indeed the logarithm of the half life is of the Viola–
Seaborg type

log10 T1=2 ¼ c1ðrBÞvþ c2VfragðrBÞ þ c3ðrB;A
2Þ; ð2:110Þ

because the fragmentation potential contains the product ZDZC. Let us mention that
in the above relation we neglected for the weaker dependence on the second
argument qB ¼ jrB ¼

ffiffiffiffiffiffiffiffiffi
2lQ
p

rB=�h of the Coulomb–Hankel function (2.89) [27].
Obviously, the sum does not depend upon the radius and the free term depends on
the logarithm of the wave function amplitude squared.

In Fig. 2.10 we plotted the difference log10 T1=2 � c2VfragðrBÞ � c3ðrB;A2Þ
versus the Coulomb parameter v, by using the same five symbols for the above
described regions. Amazingly enough, we obtained three lines, corresponding to
different amplitudes of the wave function at the radius rB. The regions 1 and 4,
corresponding to emitters above double magic nuclei 50Sn and 208Pb, respectively,
have practically the same internal amplitudes A. The same is true for the regions 3
and 5.
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Fig. 2.9 The logarithm of
the reduced width squared
versus the fragmentation
potential (2.106) for five
regions of the nuclear chart
described by (2.109)
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Finally we mention that the linear dependence of log10c
2 versus the fragmen-

tation potential (2.108) remains valid for any kind of cluster emission. This fact is
nicely confirmed by a and cluster emission processes in Fig. 2.11a, where we
plotted the dependence between the corresponding experimental values for the
same decays in Fig. 2.6. The straight line is the linear fit for cluster emission
processes, except a-decay

log10c
2 ¼ �0:586ðVC � QÞ þ 15:399: ð2:111Þ

As already mentioned, for a-decays the fit gives several parallel lines corre-
sponding to regions (2.109) in Fig. 2.8.

The above value of the slope �log10e2=�hx in Eq. 2.108 leads to �hx 
 1:5 MeV;
with the same order of magnitude as in the a-decay case. The relative large
scattering of experimental data around the straight line in Fig. 2.11a can be
explained by the simplicity of the used cluster-core potential emission processes,
(2.103).

Let us mention that a relation expressing the spectroscopic factor (proportional
to the integral of the reduced width squared) for cluster emission processes was
derived in Ref. [31]

S ¼ SðAC�1Þ=3
a ; ð2:112Þ

where AC is the mass of the emitted light cluster and Sa * 10-2. As can be seen
from Fig. 2.11b, between AC and Vfrag there exists a rather good linear dependence
and therefore the above scaling law can be easily understood in terms of the
fragmentation potential.
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Fig. 2.10 The difference
log10 T1=2 � c2VfragðrBÞ �
c3ðrB;A2Þ versus the
Coulomb parameter v for five
different regions described by
(2.109). The straight lines are
the corresponding linear fits
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Concerning the reduced widths of proton emitters, in Refs. [20, 32] it was
pointed out the correlation between the reduced width and the quadrupole
deformation. This fact can be seen in Fig. 2.12a, where the region with Z \ 68
corresponds to b[ 0.1 (open circles), while the other one with Z [ 68 to
b\ 0.1 (dark circles). The two linear fits have obviously different slopes. This
dependence is induced by the propagator matrix, entering the definition of the
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Fig. 2.11 a The logarithm of
the reduced width squared
versus the fragmentation
potential (2.106). Different
symbols correspond to cluster
decays in Fig. 2.6. The
straight line is the linear fit
(2.111) for cluster emission
processes, except a-decay.
b Cluster mass number versus
the fragmentation potential
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Fig. 2.12 a The logarithm of
the reduced width squared
versus the quadrupole defor-
mation. By open circles are
given proton emitters with
Z \ 68, while by dark circles
those with Z [ 68. The two
regression lines fit the corre-
sponding data. b The loga-
rithm of the reduced width
squared versus the fragmen-
tation potential (2.106). The
symbols are the same as in a
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deformed reduced width, given by Eq. 4.17. Notice that the two dark circles
with the smallest reduced widths correspond to the heaviest emitters with
Z [ 80.

At the same time one sees from Fig. 2.12b that the same data are clustered into
two regions, which can be directly related with the fragmentation potential (2.106).
Here the two linear fits in terms of the fragmentation potential, corresponding to
the two regions of charge numbers, have roughly the same slopes, but different
values in origin, i.e.

log10c
2 ¼ �0:283ðVC � QÞ þ 1:329; Z\68

log10c
2 ¼ �0:365ðVC � QÞ þ 3:440; Z [ 68:

ð2:113Þ

The ho energy is �hx 
 1:5 MeV for proton emission, i.e. the same order as for
heavy cluster radioactivity and a-decay.

Thus, the two different lines in Fig. 2.3b can be directly connected with similar
lines in Fig. 2.12b. They correspond to different orders of magnitude of the
fragmentation potential, giving different orders of magnitude to wave functions
and therefore to reduced widths.

2.8 Inter-Fragment Potential

As it was already mentioned, we can describe various emission processes, from the
proton emission up to the cold fission, within the stationary coupled channels
formalism. We suppose that the emitted fragments are already born and their
motion is fully described by the Schrödinger equation with a two-body potential,
defined for all inter-fragment distances. Obviously, such a description is strictly
valid only for the particle (proton/neutron) emission. In the general case when both
emitted fragments have structure, like for instance in a-decay, this potential picture
is an idealization. Anyway, the emitted fragments are already formed in the region
around the geometrical touching point, i.e. at the nuclear surface and only here one
can determine a two-body potential. In the overlapping region the Pauli principle
acts and the two fragments loose their identity. The equivalent potential becomes
non-local and for a correct treatment, it is necessary the antisymmetrization of the
wave function within the so-called Resonating Group Method (RGM), as it is
described in the review [33], devoted to the microscopic description of cluster
emission. Unfortunately, this method is adequate to describe the emission of rel-
ative light particle from nuclei close to a double magic nucleus, as it is the a-decay
from 212Po.

Anyway, a reasonable way to simulate the Pauli principle is the introduction of
a repulsive core. As many calculations showed, the shape of this potential is not
important, its only role consists in adjusting the energy of the resonant state in the
resulting pocket-like potential to the experimental Q-value. The reason for this is
that only the external part of the potential is important, in order to determine the
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asymptotics of the wave function and therefore the physical observables, like
channel decay widths.

2.9 Double Folding Potential

The most general method to estimate the interaction potential between two
composite fragments is the double folding procedure. We will suppose that both
emitted fragments can be excited during the decay process. We separate the
rotational degrees of freedom from other internal coordinates i.e. xk = (ak, xk),
where xk are the Euler rotational coordinates. A good approximation of the
Hamiltonian, describing the binary emission process, is given by the following
ansatz

H ¼ ��h2

2l
Dr þH1ða1Þ þH2ða2Þ þ T1ðx1Þ þ T2ðx2Þ þ Vða1; a2;x1;x2; rÞ;

ð2:114Þ

where Hk(ak) is connected with the internal dynamics of fragments, while Tk(xk)
with their rotational motion. This Hamiltonian describes a large variety of situa-
tions, i.e. proton/neutron emission, a-decay, heavy cluster emission and fission.

The double folding procedure is described in many text-books and review
papers, e.g. [34], and consists of the following six dimensional integral

Vða1; a2;x1;x2; rÞ ¼
Z

dr1

Z
dr2q1ða1; r1Þq2ða2; r2Þvðr12Þ

r12 � rþ r2 � r1;

ð2:115Þ

where rk is the radius giving the nucleon position inside the k-th nucleus, as seen in
Fig. 2.13, qk is the nuclear density of the k-th fragment and v(r12) is the nucleon–
nucleon force. The most popular two-body interaction, used to describe heavy ion
scattering, is given by a superposition of Yukawa potentials, simulating the
exchange of different mesons, called also M3Y interaction [35]. It is given by the
following relation

vðr12Þ ¼ v00ðr12Þ þ Ĵ00dðr12Þ þ v01ðr12Þs1 � s2 þ
e2

r12
; ð2:116Þ

where the central and isospin parts have respectively the following expressions

v00ðrÞ ¼ 7999
e�4r

4r
� 2134

e�2:5r

2:5r

� �
MeV

v01ðrÞ ¼ �4885:5
e�4r

4r
þ 1175:5

e�2:5r

2:5r

� �
MeV:

ð2:117Þ
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The second term in Eq. 2.116 approximates the single-nucleon exchange effects

through a zero-range pseudopotential with the strength Ĵ00 ¼ �262 MeV fm3:
Let us consider for simplicity that both nuclei are axially symmetric, but the

generalization to the triaxial case is straightforward. The radial components of the
nuclear densities are given by the standard multipole expansion, which can be
written in both intrinsic and laboratory systems of coordinates as follows

qðak; rkÞ ¼
X

k

qkðak; rkÞYk0ðr̂0kÞ

¼
X
kl

qkðak; rkÞDk
l0ðxkÞYklðr̂kÞ; k ¼ 1; 2:

ð2:118Þ

We then expand the two-body interaction in Fourier components

vðrþ r2 � r1Þ ¼
Z

q2dqdq̂~vðqÞeiqreiqr2 e�iqr1 ; ð2:119Þ

where one has for the Yukawa-like interaction

~vðqÞ ¼ 1

ð2pÞ3
Z

v0
eikr

r
eiq:rdr ¼ 1

ð2pÞ3
4pv0

q2 þ k2
: ð2:120Þ

By using the multipole representation of the plane wave

eiq:r ¼ 4p
X

l

iljlðqrÞ
X

m

Ylmðq̂ÞY�lmðr̂Þ; ð2:121Þ

we obtain

Vða1; a2;x1;x2; rÞ ¼ V0ða1; a2; rÞ þ Vdða1; a2;x1;x2; rÞ; ð2:122Þ

where the deformed part of the potential is given by

1ω
r1

2ω
r2 

r

Fig. 2.13 Geometry of the
double folding interaction
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Vdða1; a2;x1;x2; rÞ ¼
X

k1k2k3

Vk1k2k3ða1; a2; rÞ

� Dk1
0 ðx1Þ 	 Dk2

0 ðx2Þ
h i

k3

	 Yk3ðr̂Þ
� �

0

:

ð2:123Þ

Here the term (k1k2k3) = (000) is excluded from summation. The radial
formfactor in (2.123) is given by the integration over the angular coordinate q̂

Vk1k2k3ða1; a2; rÞ ¼ ik1�k2þk3
ð4pÞ3ffiffiffiffiffiffi

4p
p k̂1k̂2hk1; 0; k2; 0jk3; 0i

�
Z1

0

q2dq~vðqÞ~qk1
ðqÞ~qk2

ðqÞjk3ðqrÞ:
ð2:124Þ

where we introduced the radial Fourier transform of densities

~qkk
ðqÞ ¼

Z1

0

r2
k drkqkk

ðrkÞjkkðqrkÞ: ð2:125Þ

The spherical part of the potential can be written as a particular case of the above
double folding potential, i.e.

V0ða1; a2; rÞ ¼
1ffiffiffiffiffiffi
4p
p V000ða1; a2; rÞ: ð2:126Þ

In the following we will describe various particular cases of the inter-fragment
potential.

2.9.1 Boson Emission

Let us consider that both fragments are even–even nuclei with internal structure,
like for instance in fission processes. They are left in ground or excited state and
this kind of spectroscopy is characterized by a double fine structure.

Experimental measurements by electron scattering and microscopic calcula-
tions showed that the density distribution of fragments can be approximated by a
Fermi-like shape, i.e.

qðak; r
0
kÞ ¼

qð0Þk

1þ e½rk�Rðr̂0kÞ�=ak
; k ¼ 1; 2; ð2:127Þ

where the radius of the nuclear surface is given by

Rðr̂0kÞ ¼ R0 1þ
X
k [ 0

X
m

akmYkmðr̂0kÞ
" #

; ð2:128Þ
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and the central densities are normalized by the total number of protons and neu-
trons separately.

The case when k2 = 0, k1 = k3 = k describes the emission of a structureless
particle ‘‘2’’ in the field of the daughter nucleus ‘‘1’’. This kind of spectroscopy is
characterized by a single fine structure. The typical case is the a-decay, but the
emission of spherical heavy clusters is also described by this particular ansatz. In
all these cases the proton density of the light cluster is given by a Gaussian-like
distribution, i.e.

qðr2Þ ¼
Z2

b3p3=2
e�ðr2=bÞ2 ; ð2:129Þ

and a similar expression for the neutron density. The parameter of the distri-
bution width is b = 1.19 fm for an a-particle, b = 1.58 fm for 12C, b = 1.74 fm
for 14C [36]. The expansion (2.123) becomes the usual multipole–multipole
interaction

Vða;x; rÞ ¼ V0ða; rÞ þ
X
k [ 0

Vkða; rÞ
X

l

Dk
l0ðxÞYklðr̂Þ: ð2:130Þ

The last sum over l represents nothing else but the rotation (by Euler angles x) in
the intrinsic system of coordinates

Vða; r0Þ ¼ V0ða; rÞ þ
X
k [ 0

Vkða; rÞYk0ðr̂0Þ: ð2:131Þ

2.9.2 Fermion Emission

Let us suppose that the light particle is a fermion (proton or neutron) and the
daughter nucleus has axial symmetry. The interaction potential is given by the
following ansatz

Vðx; r; sÞ ¼ V0ðr; sÞ þ Vdðx; r; sÞ; ð2:132Þ

where V0(r, s) is the spherical component of the interaction

V0ðr; sÞ � V0ðrÞ þ VsoðrÞl�r: ð2:133Þ

Here V0(r) is the central interaction between the left nucleus and the fermion,
while Vso(r) is the spin-orbit interaction (r = 2s). The central potential includes
the nuclear part VN(r) and the Coulomb interaction VC(r). The folding procedure
gives as a result the nuclear potential with a Woods–Saxon shape, like it is given in
Fig. 2.1.
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The deformed part can be written in a similar way as (2.130), i.e.

Vdðx; r; sÞ �
X
k [ 0

Vkðr; sÞQkðxÞ � Tkðr̂Þ: ð2:134Þ

The scalar product is, as usually, QkðxÞ � Tkðr̂Þ ¼
P

l Q�klðxÞTklðr̂ÞwhereQklðxÞ is
the k-pole operator which depends upon the collective coordinate x. For example,
in the case of collective rotations this coordinate corresponds to the Euler rotation
angles x : (/, h, w), while for vibrational modes it corresponds to the quadru-
pole coordinates a2l.

The multipole operator Tkl has a more complex structure, as it is given in
Appendix (14.1), i.e.

Vkðr; sÞQkðxÞ � Tkðr̂Þ ! Vc;kðrÞQkðxÞ � Ykðr̂Þ
þ V ðk�1Þ

so;k ðrÞQkðxÞ � Tðk�1Þ
k ðr̂; rÞ þ V ðkþ1Þ

so;k ðrÞQkðxÞ � T ðkþ1Þ
k ðr̂; rÞ;

ð2:135Þ

where the differential operator T ðk�1Þ
kl is defined in Eq. 14.33 and describes the

deformed spin-orbit part of the mean field.

2.9.3 Vibrational Nuclei

Let us consider an emission process where the light particle is structureless
(a proton or an a-particle) and the heavy fragment is left in a vibrational state. Let
us also suppose that the deformed interaction (2.131) has equipotential surfaces
given by the ansatz (2.128). This means that the potential an be written as follows

Vða; r0Þ ¼ V
r

1þ
P

k [ 0

P
m akmYkmðr̂0Þ

� �
: ð2:136Þ

By expanding this function around the spherical shape one obtains the general
form of the interaction between a vibrational core and the emitted light particle

Vða; r0Þ 
 Vð0; rÞ þ
X
k [ 0

X
m

oVð0; rÞ
oakm

akm

¼ Vð0; rÞ � r
oVð0; rÞ

or

X
k [ 0

X
m

akmYkmðr̂0Þ:
ð2:137Þ

In the laboratory system it becomes

Vða;x; r0Þ ¼ V0ð0; rÞ � r
oVkð0; rÞ

or

X
k [ 0

X
lm

akmD
k
lmðxÞYklðr̂Þ: ð2:138Þ
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2.9.4 Triaxial Nuclei

The above potential is a particular case of a general triaxial interaction

Vðx; r; sÞ ¼ V0ðr; sÞ þ
X
k [ 0

Vkðr; sÞ � DkðxÞ � Tkðr̂Þ;

� V0ðr; sÞ þ
X

k [ 0;l

Vklðr; sÞ
X

m

Dk
mlðxÞTkmðr̂Þ;

ð2:139Þ

where the multipole operators Tkl correspond to the usual spherical harmonics for
the central part of the potential, while for the spin-orbit interaction (which includes
derivatives) Tkl are the differential operators given by Eq. 14.33.

Therefore, one obtains in the intrinsic system the expression

Vðx; r0; sÞ ¼ V0ðr; sÞ þ
X

k [ 0;l

Vklðr; sÞTklðr̂0Þ: ð2:140Þ

2.10 Spectroscopic Factor

The above described double folding procedure supposes that the two fragments are
already born. The parameters of the M3Y interaction (2.117) correspond to a
double folding potential describing the heavy ion scattering. Yet, the wave func-
tion describing the emission process P ? D + C, where P(D) is the parent
(daughter) nucleus, has a cluster-like ansatz, i.e. it is a superposition of different
mutually orthogonal channel components, similar with Eq. 2.59

WJiMiðxP; rÞ !
X

c

FcðrÞYðcÞJiMi
ðxD; xC; r̂Þ; ð2:141Þ

where x indicates the internal coordinate. We did not write the equality sign
because, in general, the wave function of the initial configuration, given by the left
hand side, does not contain a 100% cluster-like representation, as it is written by
the right hand side.

Indeed, the ratio between the computed half life, by using the phenomeno-
logical double folding potential, and the experimental value is less than unity. It is
called phenomenological spectroscopic factor

S ¼ Tphen

Texp

: ð2:142Þ

This is due to the fact that actually the emitted fragments do not exist during the
decay process, but they are born with certain probability. In deriving the expres-
sion of the decay width (2.83) we divided the outgoing flux to the volume integral
of the wave function squared over the internal volume, by considering its value

2.9 Double Folding Potential 45

http://dx.doi.org/10.1007/978-3-642-14406-6_14


unity. Actually this volume integral gives the creation probability of emitted
fragments.

The amplitude of the cluster-like ansatz contained in the initial wave function
(2.141) is the overlap between the initial wave function and the product between
the internal wave functions of the emitted fragments

FcðrÞ ¼ hYðcÞJiMi
jWJiMii: ð2:143Þ

It is also called preformation amplitude and will be extensively analyzed in the
second part of the book. Here, we only give the main ideas connected with this
concept.

2.10.1 Particle Emission

For a proton emission from an odd–even emitter, connecting deformed nuclei in
their ground states, the channel is given by the spin projection, i.e. c : K. Let us

denote by a
y
pK the particle creation operator (p = proton). The initial wave

function in the pairing approach is a superposition of different proton excitations

of the parent Bardeen–Cooper–Schriffer (BCS) vacuum aypK jBCSpPi: Since

a
y
pK jBCSpDi ¼ uðDÞpK aypK þ vðDÞpK apK

h i
jBCSpDi: ð2:144Þ

The preformation amplitude becomes

FK � hBCSpDjapKaypK jBCSpPi ¼ uðDÞpK hBCSpDjBCSpPi 
 uðDÞpK : ð2:145Þ

where the last approximation reflects the blocking effect of the odd proton. It is
important to point out that in proton emission the spectroscopic amplitude FK is a
constant, corresponding to the BCS amplitude around the Fermi surface, i.e.
uK �

ffiffiffiffiffiffiffi
0:5
p

: It multiplies the scattering amplitude NK.

2.10.2 Cluster Emission

The situation changes for cluster emission. The preformation amplitude (2.143)
is a function of the radius between emitted fragments and it plays the role of
the ‘‘internal’’ wave function. It should satisfy the matching condition with
respect to the corresponding ‘‘external’’ channel radial component at certain
radius R, i.e.
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FcðRÞ ¼
fcðRÞ

R

F0
cðRÞ ¼

fcðrÞ
r

� �0
r¼R

:

ð2:146Þ

In the second part, devoted to microscopic approaches, we will analyze in detail
the properties of the preformation amplitude. Here we give only some preliminary
details.

Let us illustrate how to estimate the overlap integral (2.143) in the case of
a-decays involving transitions between ground states. The main idea is to find an
a-like four body creation operator connecting daughter with parent nuclei, i.e.

jWPi ¼ Pya jWDi: ð2:147Þ

If both parent and daughter are deformed nuclei, described within the pairing
approach, than one has the following factorization

Pya ¼ PypPym ; ð2:148Þ

in terms of proton and neutron two body creation operators

Pys ¼
X

K [ 0

XsKa
y
sKa
y
sK
; s ¼ p; m: ð2:149Þ

The expansion coefficients are given by the following ansatz

XsK ¼ hBCSsPjaysKa
y
sK
jBCSsDi 
 uðDÞsK vðDÞsK : ð2:150Þ

Thus the overlap integral becomes

FaðrÞ ¼ hWDWajPya jWDi ¼
X

KK 0[ 0

XpKXmK0 hWajaypKa
y
pK

a
y
mK0a
y
mK
0 j0i; ð2:151Þ

where Wa is the a-particle wave function, written as a product of three Gaussians
in relative proton–neutron coordinates [37–39]. This four-body overlap integral
will be computed in the second part of the book, by using the standard recoupling
of two proton and two neutron single particle states, from absolute to the relative
and center of mass coordinates [40].

In the case of the cluster emission, one obtains a similar representation [41]. For
instance in 14C emission a good approximation of the parent wave function, at
distances where Pauli principle is less important, is given by

jWPi 
 Pya1
Pya2

Pya3
Pym jWDi; ð2:152Þ
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and the preformation factor is given by a similar expression, i.e.

F14CðrÞ ¼ hWDW14CjPya1
Pya2

Pya3
Pym jWDi; ð2:153Þ

where W14C is the 14C wave function, written as a product of several Gaussians in
relative coordinates.

One defines the microscopic spectroscopic factor for transitions connecting
ground states by the following integral

Sgs ¼
X

c

Z1

0

jrFcðrÞj2dr: ð2:154Þ

It gives the order of magnitude of the cluster content inside the parent wave
function. In principle it should have the same order of magnitude as the spectro-
scopic factor defined by Eq. 2.142. Actually they are quite different and the ratio
S/Sgs defines the amount of the additional clustering with respect to the micro-
scopic estimate, given by the preformation amplitude (2.143).
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