Chapter 2
Voice over Internet Protocol

Abstract This chapter presents an overview of the architecture and protocols involved in implementing VoIP networks. After the overview, the chapter discusses the various factors that affect a high quality VoIP call. Furthermore, the chapter introduces various codecs and the engineering tradeoffs between delay and bandwidth. Finally, the chapter gives a detailed explanation of the currently widely used VoIP call signaling protocol, the Session Initiation Protocol or SIP.

2.1 VoIP Architecture

2.1.1 VoIP System

VoIP calls can take place between phone-to-phone, PC-to-PC, and phone-to-PC. The VoIP system configuration [20], shown in Fig. 2.1, is a representative scenario. In the PC-to-PC call, as an example, once the media path is established, the analog signal is sampled at 8 kHz or another frequency depending upon the codec. These samples are then encoded in an appropriate binary format. The encoded samples are put into UDP packets of different sizes and sent over the Internet. The reverse process takes place at the receiver PC: the speech samples are extracted from the packet, processed, and then put into the play-out buffer as the analog speech signal.

2.1.2 VoIP Protocol Structure

Since the 1990s, the dominant commercial architecture uses the Internet protocol suite TCP/IP, whereas VoIP uses RTP/UDP/IP. Figure 2.2 gives the complete communication network architecture.
As we know, the Internet Protocol (IP) deals only with the connectionless delivery of the packets, which is based on a best-effort service. Transmission Control Protocol (TCP) is a reliable connection oriented control protocol above IP. The TCP has the following characteristics. The TCP is:

- **Reliable**

 Each transmission of data is acknowledged by the receiver, and retransmission is needed to ensure packet receipt in case of packet loss or error in the packet.

- **Connection oriented**

 A virtual connection is established before any user data is transferred.
• **Full Duplex**

 The transmission is provided in both directions.

• **Rate Adjustment**

 The transmission rate increases when no congestion is detected; the transmission rate reduces quickly when the sender does not receive positive acknowledgments from the receiver within a stipulated timeframe.

 Despite these features, the TCP/IP is not suitable for real-time communications, such as speech, because the acknowledgment/retransmission feature would lead to excessive delays [21].

In contrast to TCP, User Datagram Protocol (UDP) is classified as an unreliable connectionless protocol, which does not provide sequencing and acknowledgement. Without flow control and error recovery, UDP simply sends and receives IP traffic between users in an Internet.

The Real-Time Protocol (RTP), used in conjunction with UDP, provides end-to-end network transport functions for applications transmitting real-time data, such as audio and video, over unicast and multicast network services [22]. RTP standardizes the packet format by including the sequence numbers and timestamps, which is convenient to multimedia applications. It should be emphasized that RTP in itself does not provide any mechanism to ensure timely delivery of data or provide other quality of service guarantees [23]. Indeed, RTP encapsulation can only be seen at the end user location, and is not distinguishable from IP packets without RTP at the intermediary routers.

A companion protocol RTCP does support the features as follows:

• Monitors the link
• Separates packets sent on a different port number
• Exchanges information about losses and delays between the end systems
• Sends packets in intervals based on number of end systems and available bandwidth

However, a continuous stream of RTP/UDP/IP packets is offered in most VoIP applications as shown in Fig. 2.3.

As far as VoIP call signaling protocols are concerned, there are peer-to-peer control-signaling protocols such as H.323 protocol suites [24] and SIP [25],

![Fig. 2.3 VoIP protocol structure](image)

<table>
<thead>
<tr>
<th>Application layer</th>
<th>Audio / Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTP</td>
<td>RTCP</td>
</tr>
<tr>
<td>SIP</td>
<td>H.323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport layer</th>
<th>UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network layer</th>
<th>IP</th>
</tr>
</thead>
</table>

| Physical layer | e.g. Ethernet/SDH |
master–slave control-signaling protocols such as Media Gateway Control Protocol (MGCP) [26-27], and Megaco/H.248 [28].

2.2 Quality of Service

Quality of Service (QoS) is a measure of the voice quality experienced by the user. The network service provider uses it for bandwidth management over the IP network in order to ensure that transmission resources consistent with the expected QoS are available. Management of network resources is becoming increasingly important as more services are added on to the Internet.

VoIP becomes an attractive and common solution for the future, since the packet-switching technology has several advantages in both cost and architectural aspects over the circuit-switching technology. However, questions remain as to whether the voice quality provided in VoIP networks can meet the high standards provided by the PSTN that users have become accustomed to, and would expect from any competing service. The quality of speech perceived by the VoIP user is ultimately determined by parameters such as delay, jitter and packet loss [29].

2.2.1 A. Delay

Due to the interactive nature of voice communication, delay becomes a primary parameter of concern in the QoS measure for VoIP networks. It is composed of transmission delay, queuing delay, processing delay and propagation delay [30]. The transmission delay is dependent on the channel capacity in bits per second (bps). Queuing delay is the time the packets are queued in the buffer before being processed. Processing delay is incurred at the end points, e.g., in processing packet headers, and in coding/decoding voice signals. Propagation delay depends on the distance traveled and the transmission medium, such as coax, fiber, or wireless channel. The propagation delay is generally negligible when compared to the other components of delay in an end-to-end VoIP scenario.

International Telecommunications Union-Telephony (ITU-T) Recommendation G.114 [31] provides one-way transmission delay specifications for voice. The specification is presented in Table 2.1. It has been shown that a mouth-to-ear delay of over 150 milliseconds (ms) is intolerable to VoIP users, and the delay between successive packets must be lower than 20 ms for uninterrupted and smooth hearing [33]. Studies have shown that several techniques such as Weighted Fair Queuing, Weighted Round Robin, Priority Round Robin, Priority Queuing, or Class-based Queuing [34], can reduce the network delay.

In this book, we largely focus on the impact of queuing delay on VoIP networks. Since voice traffic has higher priority over data traffic, the queuing behavior of the voice packets is analyzed independently from the data packets. It is
well known that an aggregate of voice (and Constant Bit Rate) video sources is reasonably accurately modeled by a Poisson arrival process and that queuing delays in consecutive nodes are more or less statistically independent [35]. Accordingly, we model two scenarios represented by the M/M/1 and M/D/1 queuing disciplines, and develop one method of calculating the throughput under a specified threshold of the total queuing delay through a VoIP network of \(N \) nodes. In addition, the analytical results addressed are used in scaling resources in a VoIP network for different thresholds of acceptable delays.

2.2.2 B. Jitter

Jitter is delay variation. It can lead to the gaps in the play out of the voice stream. The jitter can be compensated by maintaining a play out buffer on the receiver side [36], which processes the incoming packets in such a way that packets arriving earlier than average are buffered for a longer period than those arriving later. This means that the received voice stream can be recovered at a steady rate. In addition, arriving voice packets that exceed the maximum length of the jitter buffer are discarded.

2.2.3 C. Packet Loss

From an end-to-end point of view, the overall packet loss includes the network packet loss and the packet loss due to late arriving packets that are dropped at the jitter buffer. Packet loss can introduce audio distortion because of voice skips and clipping. Moreover, it can also introduce considerable impairment to voice signals. Typically, a packet loss rate of more than 5% is unacceptable for the VoIP users [37]. In order to reach the equivalent level of voice quality in a PSTN, the threshold rate of packet loss should be set below 1% in VoIP networks.

There are two methods to correct packet loss in packet switched networks. One is to use Forward Error Correction (FEC). The other is to use the packet loss concealment (PLC) algorithm [38]. The FEC method requires data redundancy and

<table>
<thead>
<tr>
<th>Delay</th>
<th>Impact</th>
<th>Pre-Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 150 ms</td>
<td>Acceptable for most user applications</td>
<td>Adequate echo control for connections of one-way delay more than 25 ms, as described in G.131 [32]</td>
</tr>
<tr>
<td>150–400 ms</td>
<td>Acceptable for international calls</td>
<td></td>
</tr>
<tr>
<td>Above 400 ms</td>
<td>Unacceptable for general network planning purposes, especially in the case of transporting voice in packet switched networks.</td>
<td></td>
</tr>
</tbody>
</table>
allows the reconstruction of lost data [39, 40]. The disadvantage of this approach is that it causes overhead bits and, therefore, additional delay. The PLC method, as implied in its name, conceals the packet loss. It uses a variety of techniques to recover the missing packets, such as silence substitution, packet repetition, waveform substitution, and pitch waveform replication [41].

2.3 VoIP Implementation

Network impairments affect the voice quality [42]. This section describes a set up in the laboratory that measures the voice quality under different kinds of network impairments.

2.3.1 VoIP Test Bed

A SIP-based VoIP test-bed is implemented as shown by interconnecting the University of Oklahoma-Tulsa (OU-Tulsa) to sip.edu by a peering arrangement. CISCO 2600 routers are configured as media gateways, and MySQL 4.0.21 open source database as the location database. SIP Express Router (SER) from http://www.iptel.org is installed and configured as the SIP proxy server. Figure 2.4 shows the implemented VoIP infrastructure for the OU-Tulsa TCOM Lab.

Fig. 2.4 OU TCOM-Lab VoIP infrastructure
In order to investigate the effects of various network impairments on the voice channel in the VoIP networks, the following test-bed to measure the perceived speech quality can be used. The test-bed consists of IPWave [43], Voice Quality Tester (VQT) [44] and the original VoIP network, as shown in Fig. 2.5.

IPWave and Agilent VQT are running on the Windows-NT operating system. IPWave is a network impairment generator to emulate the real world network conditions. It divides the network into Westbound and Eastbound and functions as a gateway. It introduces various network impairment conditions to the IP traffic from Westbound to Eastbound and vice versa. These impairments include packet loss, delay, jitter, out-of-order packets, and error in packets. The Agilent VQT is an objective speech quality measurement system used to predict the MOS of the perceived speech quality by means of the Perceptual Speech Quality Measurement (PSQM) algorithm [45]. In order to connect the FXO line of the Agilent VQT to either hard phone headset or soft phone PC’s sound card, the Agilent VQT phone adapter [46] is used.

2.3.2 Measurement of Voice Quality

Voice quality is inherently subjective because it is determined by the listener’s perception. The subjective voice quality is measured by objective measurement techniques, using the Mean Opinion Score (MOS) parameter.

The perceived speech quality is measured in the way shown in Fig. 2.6. The Agilent VQT captures the perceptual domain representation of two signals, namely, a reference signal that is input to the test-bed, and a degraded signal that is the output of the test-bed. It uses Perceptual Speech Quality Measurement (PSQM)
to analyze the voice quality in terms of MOS, which is widely accepted as a norm for voice quality rating.

Different experiments were conducted to determine the influence of packet loss on the voice quality. In this measure, we only apply one codec (G.711-\(\mu\)Law) selected from the Cisco hard phone. We observe the impact on quality of a number of factors: periodic packet loss, random packet loss and burst packet loss. The results of these three loss models are shown in Figs. 2.7, 2.8 and 2.9, respectively. By comparing the three figures, we can see that the voice quality decreases as the amount of packet loss increases. It also shows that burst packet loss has more influence on the perceived voice quality.

2.4 Session Initiation Protocol

This part introduces the Session Initiation Protocol (SIP) specification and provides important aspects of SIP application in Voice over IP networks.

2.4.1 Background

The Session Initiation Protocol owes its origin in 1996 to the Internet Engineering Task Force (IETF) in order to distribute multimedia content. Since SIP was standardized to be adopted for Voice over Internet Protocol (VoIP) in 1999 as
RFC2543, it has evolved significantly and now it covers a wide range of real-time collaboration functionalities [49]. In this chapter, we will only focus on the latest standard RFC3261.

SIP is an end-to-end, client-server session signaling protocol. It is designed to establish presence, locate users, set up, modify and tear down voice and video sessions across the packet-switched networks. Borrowing from the ubiquitous Internet protocol, such as the hypertext transfer protocol (HTTP) and simple mail transfer protocol (SMTP), SIP is text-encoded, programmable, and highly flexible.
Due to its simplicity and extensibility, as well as the newly created features, SIP is not limited to IP telephony. SIP messages can convey arbitrary level of signaling payload, session description, instant messages, JPEGs, and any MIME type. SIP uses Session Description Protocol (SDP) for media description.

2.4.2 SIP Network Elements

2.4.2.1 A. User Agent

User agents are end entities in SIP-based Networks to connect each other and negotiate session parameters. User agents can be both hardware and software. For example, in the SIP-based VoIP testbed in the lab, we used a Cisco 7960 SIP phone as shown in Fig. 2.10. It usually, but not necessarily, resides on a user’s computer in form of a user application. It can also be a PSTN gateway, a cellular phone, a PDA and so on.
In terms of functionalities, a UA can be categorized into User Agent Client (UAC) or User Agent Server (UAS). UAC and UAS are logically separated but physically combined in the same end point. UAC works on behalf of the client to originate the call and receive the response, whereas the UAS functions on the behalf of the server to listen to the incoming calls and to respond to request. For example, in order to initiate a call session, an INVITE message is sent by the caller’s UAC, and received by the callee’s UAS. On the other hand, in order to terminate the session, a BYE message is sent by callee’s UAC and received by the caller’s UAS.

2.4.2.2 B. SIP Server

Based on the functionalities, SIP servers are logically classified into three components as Registrar, Proxy Server, and Redirect Server.

Registrar is one of the SIP servers used to initialize and keep record of the user agent. It accepts the REGISTER requests and maintains the information of the users’ AoR (Address of Record) including various kinds of SIP URL addresses binding to the same user. Registrar also indicates the current address as the first priority where the user wants to send the request and receive the response [53].

Proxy server plays a very important role in processing the SIP signaling messages. It receives the request from the users and looks up in the location server, where all the records of the users are kept, to find the destination address. And then the SIP server forwards the request by interpreting, and modifying certain parts of the INVITE message, such as Via. Proxy servers can be classified as stateful proxy server or stateless proxy servers.

2.4.3 SIP Messages

SIP messages are divided into two types depending on the direction of the messages. The SIP message sent from the client to the server is the Request message,

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITE</td>
<td>Initiates a call, changes call parameters (re-INVITE)</td>
</tr>
<tr>
<td>ACK</td>
<td>Confirms a final response for INVITE</td>
</tr>
<tr>
<td>BYE</td>
<td>Terminates a call</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Cancels searches and “ringing”</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>Queries the capabilities of the other side</td>
</tr>
<tr>
<td>REGISTER</td>
<td>Registers with the Location Service</td>
</tr>
<tr>
<td>INFO</td>
<td>Sends mid-session information that does not modify the session state</td>
</tr>
</tbody>
</table>
while that from the server to the client is the Response message. Tables 2.2 and 2.3 give examples of the Request and Response SIP messages, respectively.

SIP messages consist of three main parts: start line, header, and message body. Each SIP message begins with a start line to convey the message type and the protocol version. SIP headers are borrowed from the syntax and semantics of HTTP header fields, to convey more message attributes. The message body can use either Session Description Protocol (SDP) or Multipurpose Internet Mail Extensions (MIME). Here is an example of the INVITE message:

```
INVITE sip:bob@nice.com SIP/3.0
Via: SIP/3.0/UDP 192.2.4.4:5060
To: Bob <sip:555-6666@nice.com>
From: Aline <sip:555-1234@nice.com>; tag = 203 941 885
Call-ID: b95c5d87f7721@192.2.4.4
Cseq: 26 563 897 INVITE
Contact: <sip:555-1234@192.2.4.4>
Content-Type: application/sdp
Contact-Length: 142
v = 0
o = Alice 53655765 2353687637 IN IP4 128.3.4.5
s = Call from Alice
c = IN IP4 192.2.4.4
M = audio 3456 RTP/AVP 0 3 4 5
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Class</th>
<th>Description</th>
<th>Examples</th>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisional</td>
<td>1xx</td>
<td>In Progress</td>
<td>100 Trying</td>
<td>100</td>
<td>Trying</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180 Ringing</td>
<td>180</td>
<td>Ringing</td>
</tr>
<tr>
<td>Final</td>
<td>2xx</td>
<td>Success</td>
<td>200 OK</td>
<td>200</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>3xx</td>
<td>Redirection</td>
<td>300 Multiple choices</td>
<td>300</td>
<td>Multiple choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>301 Moved permanently</td>
<td>301</td>
<td>Moved permanently</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>302 Moved temporarily</td>
<td>302</td>
<td>Moved temporarily</td>
</tr>
<tr>
<td></td>
<td>4xx</td>
<td>Client Error</td>
<td>400 Bad request</td>
<td>400</td>
<td>Bad request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>401 Unauthorized</td>
<td>401</td>
<td>Unauthorized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>403 Forbidden</td>
<td>403</td>
<td>Forbidden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>408 Request time-out</td>
<td>408</td>
<td>Request time-out</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>480 Temporarily unavailable</td>
<td>480</td>
<td>Temporarily unavailable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>481 Call/Transaction does not exist</td>
<td>481</td>
<td>Call/Transaction does not exist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>482 Loop detected</td>
<td>482</td>
<td>Loop detected</td>
</tr>
<tr>
<td></td>
<td>5xx</td>
<td>Server Error</td>
<td>500 Server error</td>
<td>500</td>
<td>Server error</td>
</tr>
<tr>
<td></td>
<td>6xx</td>
<td>Global Failure</td>
<td>600 Busy everywhere</td>
<td>600</td>
<td>Busy everywhere</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>603 Decline</td>
<td>603</td>
<td>Decline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>604 Does not exist anywhere</td>
<td>604</td>
<td>Does not exist anywhere</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>606 Not acceptable</td>
<td>606</td>
<td>Not acceptable</td>
</tr>
</tbody>
</table>
2.4.4 SIP Transactions

A SIP transaction is a sequence of SIP messages ranging from the request to all responses to that request. SIP is transactional, because the SIP messages are arranged into transactions, although they are sent independently. SIP transactions have both client and server sides. In each side, there are two types known as an INVITE transaction, where the request is an INVITE, and the non-INVITE transaction. Unlike the INVITE transaction, a non-INVITE transaction only has a single 2xx response, without ACK or other special handling. Figure 2.11 gives examples of two SIP transactions. In Trans #1, the ACK is not considered part of the transaction since the response was a 2xx. While in Trans #2, the ACK is included in the transaction only if the final response is not a 2xx response.

As addressed in RFC3261 [25], the transaction identifier is expressed as the branch parameter inside the Via header fields. However, since the previous SIP RFC2543 calculates the transaction identifier as the hash of all important message header fields (that included To, From, Request-URI and CSeq) [54], a compatible feature should be provided for backward support.

2.4.5 SIP Dialogues

SIP dialog represents a peer-to-peer relationship between two end user agents. Also shown in Fig. 2.11, the two transactions are not treated independently, but related in such a way that they are identified as belonging to the same dialog.

Fig. 2.11 SIP transactions and dialogs
Being identified by From and To tags and the Call-ID, SIP Dialogs facilitate proper sequencing and routing of messages between the user agents [25]. Also, the command sequence (Cseq) contains an integer and a method name. This Cseq number is incremented for each new request, which actually means that the CSeq number identifies a transaction. To some degree, a dialog is a sequence of transactions [52].

2.4.6 Typical SIP Scenarios

To understand SIP signaling, two scenarios to illustrate the SIP message flow are presented in the following.

One is a redirection scenario as shown in Fig. 2.12. Upon receiving the INVITE message from the user agent A, the redirect server responds with 302 (Moved Temporarily), indicating the user agent B is temporarily available at an alternate address expressed in the Contact header. Sometimes, the duration of validity of these addresses is also included. After returning the acknowledgement to the redirect server, the user agent A sends a second INVITE message directly to the user agent B, by using the routing information pushed back from the redirect server. With the aid in locating the target of the request from the redirect server, the procedure becomes simple and quick. In other words, the redirect server results in a high level of performance. It is worth noting that the second INVITE message has a different CSeq value from the first INVITE message; however, the To and From headers, Call-ID, and dialog identifiers remain the same. The following sequence of signaling is common in each scenario: once the user agent B picks up

Fig. 2.12 Signaling flow with redirect server [55]
the phone, the 200 OK message is sent back to the user agent A, and the media flow is established after the user agent B receives the acknowledgement.

The other scenario, as shown in Fig. 2.13, is that the request traverses multiple proxy servers before reaching the destination. The main difference from the first scenario is that after making the routing decision, each intermediary proxy server modifies the INVITE message and then forwards it to the next proxy server. The response routes through the same set of proxies in the reverse order.

2.5 Summary

This chapter has provided a brief overview of VoIP networks from different perspectives. Laboratory implementation and studies on the measurement of voice quality have been discussed. The popular VoIP signaling procedure SIP has been described in detail. In the next section, we will present the analytical model for delay-throughput analysis adopted in this book.
Voice over IP Networks
Quality of Service, Pricing and Security
Verma, P.K.; Wang, L.
2011, X, 130 p., Hardcover
ISBN: 978-3-642-14329-8