Contents

1 Cluster Radioactivity ... 1
 1.1 Introduction ... 1
 1.2 Macroscopic–Microscopic Method 3
 1.2.1 Surface Parametrization 4
 1.2.2 Mass Defect and the Q-Values 5
 1.2.3 Liquid Drop Model .. 6
 1.2.4 Phenomenological Yukawa-Plus-Exponential 8
 1.2.5 Single Particle Shell Model 11
 1.2.6 Shell and Pairing Corrections 16
 1.2.7 Potential Energy Surfaces 18
 1.2.8 Saddle-Point Shapes 20
 1.3 Nuclear Dynamics .. 26
 1.3.1 Werner–Wheeler Approximation 27
 1.3.2 Cranking Inertia .. 30
 1.4 Analytical Superasymmetric Fission Model 34
 1.4.1 The Model .. 35
 1.4.2 Systematic Search for Cluster Decay Modes 37
 1.4.3 Experimental Confirmations 38
 1.4.4 Unified Approach of Cold Fission, Cluster Decay
 and z-Decay .. 41
 1.5 Universal Curves .. 42
 1.5.1 Preformation Probability in a Fission Model 42
 1.5.2 Universal Law .. 43
 1.6 Fine Structure .. 44
 1.7 Ternary and Multicluster Fission 45
 1.8 Stability of Metallic Atomic Clusters 46
 1.8.1 Liquid Drop Model of a Neutral Metallic Hemispheroidal
 Atomic Cluster ... 47
 1.8.2 New Single-Particle Shell Model 48
 1.8.3 Macroscopic–Microscopic Deformation Energy 51
References ... 52
2 Coexistence of Cluster States and Mean-Field-Type States 57
2.1 Introduction 57
2.2 AMD Theory 58
2.2.1 AMD Wave Function 58
2.2.2 Hartree–Fock-Type Orbits 60
2.3 Coexistence of Cluster Structure and Deformed Mean-Field-Type Structure in p-Shell and Light sd-Shell Nuclei 60
2.3.1 8Be Case 61
2.3.2 12C Case 68
2.3.3 16O Case 75
2.3.4 20Ne Case 82
2.4 Coexistence of Cluster Structure and Superdeformation in Heavy sd-Shell and Light pf-Shell Nuclei 91
2.4.1 44Ti Case 91
2.4.2 32S Case 96
2.5 Structure Change Between Cluster States and Mean-Field-Type States 99
2.5.1 Dual Character of Nuclear Wave Function 99
2.5.2 E0 Transitions Between Ground State and Cluster States in 16O and 12C 101
2.6 Summary 105
References 106

3 Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies 109
3.1 Binding Energy of Alpha Particles 109
3.2 The Formation of Alpha Condensates 111
3.2.1 Second Order Phase Transition 111
3.3 Experimental Observables 117
3.3.1 Inelastic Scattering, Radial Extensions, Form Factors 117
3.3.2 Compound Nucleus Decay, Correlated Emission of Alpha’s 119
3.3.3 Compound States with Multi-α Decays 120
3.3.4 Inelastic Excitation and Fragmentation 124
3.3.5 $\alpha-\alpha$ Correlations 126
3.4 Conclusions 126
References 127

4 Cluster Structure of Neutron-Rich Nuclei Studied with Antisymmetrized Molecular Dynamics Model 129
4.1 Introduction 129
4.2 Antisymmetrized Molecular Dynamics 129
4.2.1 Development of Theoretical Approaches for Cluster 129
4.2.2 AMD Wave Function: Spherical Case 130
4.2.3 Deformed-Basis AMD 132
5 Di-Neutron Clustering and Deuteron-like Tensor Correlation in Nuclear Structure Focusing on 11Li

5.1 Unstable Nuclei and the Halo Structure of 11Li

5.1.1 Experimental Facts on 9,10Li and 11Li

5.1.2 Theoretical Studies on the Halo Structure in 11Li

5.1.3 Nucleon–Nucleon Interaction and the Deuteron and the Di-Neutron System

5.1.4 Wave Functions for 9,10Li and 11Li

5.2 Di-Neutron Clustering and the Hybrid-VT Model

5.2.1 Formulation of Hybrid-VT Model

5.2.2 Application of the Hybrid-VT Model to 6He

5.2.3 Hybrid-VT Model on Di-Neutron Clustering in 11Li

5.3 Continuum and Resonance States in Complex Scaling Method

5.3.1 Formulation of CSM

5.3.2 Three Body Resonance and Continuum States in 6He

5.4 Deuteron-like Tensor Correlation and Tensor Optimized Shell Model (TOSM)

5.4.1 Formulation of TOSM

5.4.2 Formulation of UCOM

5.4.3 Numerical Results of TOSM for 4He

5.5 Di-Neutron Clustering and Deuteron-like Tensor Correlation in Li Isotopes

5.5.1 Model of Li Isotopes

5.5.2 Effective Interactions

5.5.3 9Li

5.5.4 Pauli-Blocking Effect in 11Li

5.5.5 10Li
6 Collective Clusterization in Nuclei and Excited Compound Systems: The Dynamical Cluster-Decay Model
 6.1 Introduction .. 223
 6.2 Clustering in Light, Medium-Mass, Heavy, Super-Heavy, and Super-Superheavy Nuclei: Mean Field Approach 224
 6.2.1 Relativistic Mean Field Method 225
 6.2.2 Applications of the RMF Model 229
 6.3 The Preformed-Cluster Based Dynamical Cluster-Decay Model for the Decay of Hot and Rotating Compound Nucleus 237
 6.3.1 The Preformed Cluster Model for Exotic Cluster Radioactivity .. 249
 6.3.2 Applications of the DCM Using Nuclear Proximity Potential .. 257
 6.4 Conclusions ... 261
 References ... 262

7 Giant Nuclear Systems of Molecular Type .. 267
 7.1 Introduction ... 267
 7.2 Potential Energy of Heavy Nuclear System 268
 7.2.1 Diabatic Potential Energy .. 268
 7.2.2 Adiabatic Potential Energy and the Two-Center Shell Model .. 273
 7.2.3 Two-core Approximation for Adiabatic Potential 277
 7.2.4 “Cold Valleys” within the Potential Energy Surface 279
 7.3 Local Potential Minima and Shape Isomeric States 282
 7.4 Cluster (Shell) Effects in Low Energy Heavy-Ion Collisions 283
 7.4.1 Equations of Motion .. 284
 7.4.2 Shell Effects in Low-Energy Damped Collisions 288
 7.4.3 Production of New Heavy Neutron Rich Nuclei at the “North-East” Part of Nuclear Map 292
 7.5 Low-Energy Collisions of Heavy Actinide Nuclei and Giant Nuclear Systems of Molecular Type 296
 7.5.1 Production of Superheavy Elements in Collisions of Actinide Nuclei 296
 7.5.2 Giant Nuclear Systems of Molecular Type and Spontaneous Positron Formation 301
 7.6 Three-Cluster Configurations of Giant Nuclear Systems 305
 7.7 Conclusion ... 310
 References ... 312
Clusters in Nuclei
Volume 1
Beck, C. (Ed.)
2010, XII, 316 p. 158 illus., Softcover
ISBN: 978-3-642-13898-0