Contents

1 Market Research: Overcoming Incomplete, Inconsistent, or Outdated Data .. 1
1.1 A Quick Review of Fundamental Theory 1
1.2 What is an Aviation Market? ... 2
1.3 Outbound Markets ... 4
1.4 Inbound Markets .. 5
1.5 O&Ds, Routes, and Flights .. 6
1.6 Accessing Essential Market Research Data 9
1.7 Researching Local Aviation Markets 9
1.8 Researching City-Pair Markets 10
1.8.1 Traffic Projections Based on Time Series 11
1.8.2 Upscaling .. 12
1.8.3 Gravitation Models .. 12
1.8.4 Reverse Engineering .. 13
1.8.5 White Spaces and Inconsistencies 13

2 Network Structures Follow Network Strategies 15
2.1 Complying with Basic Operational Rules 16
2.2 Sequencing Flights into Rotations 16
2.2.1 Turnaround Time is Non-Productive Time 19
2.2.2 Building Sequences of Flights: FiFo and LiFo 19
2.3 Hub-and-Spoke: The Answer to Deregulation? 20
2.3.1 Connectivity: The Central Paradigm of Hub-and-Spoke Structures .. 23
2.3.2 Connectivity and Codeshares: Camouflage or Mimicry? 27
2.3.3 Assessing Connectivity via Connection Builders 28
2.3.4 Evaluating Schedules with QSIs and Market Share Models .. 29
2.3.5 Spill and Recapture .. 31

ix
2.4 Point-to-Point: The Answer to Hub-and-Spoke? 31
 2.4.1 Stuck in Between Hubs and Spokes? On Hublets 35

3 Designing Connectivity-Driven Network and Hub Structures 37
 3.1 Connectivity Driver #1: Number of Inbound and Outbound Flights ... 38
 3.2 Connectivity Driver #2: Temporal Design of Individual Banks ... 38
 3.2.1 Bank Overlap .. 41
 3.2.2 Inbound–Outbound Overlap .. 41
 3.2.3 Inbound–Inbound and Outbound–Outbound Overlap 46
 3.3 Special Topic: Rapid Banking .. 46
 3.4 Connectivity Driver #3: Number of Banks or Waves 47
 3.5 Connectivity Driver #4: Directionality 50
 3.6 Connectivity Driver #5: Rotational Patterns 54
 3.7 Connectivity Driver #6: Airport Infrastructure 58
 3.8 Connectivity Driver #7: Random Connectivity 60
 3.9 Connectivity Driver #8: Minimum Connecting Time (MCT) 61
 3.10 Connectivity Driver #9: Internal Structure of Banks 61
 3.11 Timing of Long-Haul and Short/Medium-Haul Flights in a Bank System ... 61
 3.11.1 Structuring Banks and Hubs by the Value of Connections 63
 3.11.2 Connectivity and Operational Robustness: A Contradiction? 64

4 Designing Asset-Productive Networks .. 65
 4.1 Aircraft Utilization Revisited: Why Asset Productivity is Vital for Profitability .. 65
 4.1.1 How to Measure Aircraft Utilization 65
 4.1.2 Bank Structures Significantly Impact Aircraft Utilization 66
 4.1.3 Operational Standardization Impacts Aircraft Utilization 66
 4.1.4 Infrastructure Availability Drives Aircraft Utilization Up or Down 67
 4.1.5 How Bank Design, On-Time Performance, and Operational Robustness are Interdependent 68
 4.1.6 Flat Hub Structures: A Revolutionary Innovation or a Surrender to Complexity? 70
 4.1.7 Rolling Hubs: Combining Connectivity and Flat Structures 71
 4.2 Random Hubbing: When Big Beats Complex 73
 4.2.1 Analytical Deduction .. 73
 4.2.2 Monte Carlo Simulation .. 74
8.1.1 Scale, Scope, and Network Overlap in Multi-Hub Networks 115
8.2 Self-Amplification of Growth ... 115
8.3 Synchronizing O&DS in Multi-Hub Networks ... 116
8.3.1 How to Identify Insufficient Synchrony .. 117

9 Assessing and Comparing the Strengths and Weaknesses of Aviation Networks ... 119
9.1 How to Benchmark Demand Volume ... 120
9.2 How to Benchmark Productivity and Capacity .. 121
9.3 Why Benchmarking Connectivity is Vital to Uncovering Network Strategies 121
9.4 How Big is a Network? The Importance of Benchmarking Geographical Scope 123
9.5 What Risks are Associated with a Network, Compared to Others? 123
9.6 Some Network Strategies Cannot be Identified by Isolated KPIs—they Require Analysis Over Time .. 124

10 An Overarching Concept: The Hierarchical Layers of Aviation Networks 127
10.1 Networks are Layers of Networks ... 127
10.1.1 Demand Structures are the Basis for all Networks in Aviation 129
10.1.2 A Spatial Network is Superimposed on the Demand Network 130
10.1.3 The Temporal Layer is Added Next ... 132
10.2 How the Concept of Layered Networks can Lead to Better Managed Networks 134
10.2.1 Better Control of Network Complexity .. 134
10.2.2 Network Management Key Processes Should Follow the Scope of Individual Network Layers 134
10.2.3 Integrating Processes—Responsibilities, Accountabilities, Workflows, Decision Criteria, IT Systems—at the Same Layer 135
10.2.4 Meta-Layers Advance the Understanding of the Aviation Value Chain 135

Reference ... 137

Appendix: Market Research Checklists .. 139

Index ... 143
Networks in Aviation
Strategies and Structures
Goedeking, P.
2010, XVII, 145 p., Hardcover
ISBN: 978-3-642-13763-1