Contents

1. **Uncontrolled Systems** .. 1
 1.1 Abstract Definition of Dynamical Systems 1
 1.2 Time-Continuous Dynamical Systems 4
 1.2.1 Elementary Properties ... 4
 1.2.2 Systems in the Plane ... 8
 1.2.3 Stability: The Direct Method of Lyapunov 14
 1.2.4 Application to a General Predator-Prey Model 21
 1.2.5 Application to Evolution Matrix Games 32
 1.3 Time-Discrete Dynamical Systems 36
 1.3.1 The Autonomous Case: Definitions and Elementary Properties 36
 1.3.2 Localization of Limit Sets with the Aid of Lyapunov Functions 40
 1.3.3 Stability Based on Lyapunov’s Method 42
 1.3.4 Stability of Fixed Points via Linearisation 47
 1.3.5 Linear Systems .. 50
 1.3.6 Discretization of Time-Continuous Dynamical Systems 55
 1.3.7 Applications .. 57
 1.3.8 The Non-Autonomous Case: Definitions and Elementary Properties 62
 1.3.9 Stability Based on Lyapunov’s Method 64
 1.3.10 Linear Systems .. 67
 1.3.11 Application to a Model for the Process of Hemo-Dialysis 73

2. **Controlled Systems** .. 77
 2.1 The Time-Continuous Case .. 77
 2.1.1 The Problem of Controllability 77
 2.1.2 Controllability of Linear Systems 78
 2.1.3 Restricted Null-Controllability of Linear Systems 82
 2.1.4 Controllability of Nonlinear Systems into Rest Points 85
2.1.5 Approximate Solution of the Problem of Restricted Null-Controllability .. 89
2.1.6 Time-Minimal Restricted Null-Controllability of Linear Systems .. 91
2.2 The Time-Discrete Autonomous Case .. 101
 2.2.1 The Problem of Fixed Point Controllability 101
 2.2.2 Null-Controllability of Linear Systems 111
 2.2.3 A Method for Solving the Problem of Null-Controllability 118
 2.2.4 Stabilization of Controlled Systems 124
 2.2.5 Applications .. 126
2.3 The Time-Discrete Non-Autonomous Case 134
 2.3.1 The Problem of Fixed Point Controllability 134
 2.3.2 The General Problem of Controllability 138
 2.3.3 Stabilization of Controlled Systems 141
 2.3.4 The Problem of Reachability 143
3 Chaotic Behavior of Autonomous Time-Discrete Systems ... 149
 3.1 Chaos in the Sense of Devaney 149
 3.2 Topological Conjugacy 154
 3.3 The Topological Entropy as a Measure for Chaos 163
 3.3.1 Definition and Invariance 163
 3.3.2 The Topological Entropy of the Shift-Mapping 165
 3.3.3 Disorder-Chaos for One-Dimensional Mappings 167
 3.4 Chaos in the Sense of Li and Yorke 172
 3.5 Strange (or Chaotic) Attractors 180
 3.6 Bibliographical Remarks 190
A A Dynamical Method for the Calculation of Nash-Equilibria in n−Person Games 195
 A.1 The Fixed Point Theorems of Brouwer and Kakutani 195
 A.2 Nash Equilibria as Fixed Points of Mappings 197
 A.3 Bi-Matrix Games 202
 A.4 Evolution Matrix Games 209
B Optimal Control in Chemotherapy of Cancer 217
 B.1 The Mathematical Model and Two Control Problems 217
 B.2 Solution of the First Control Problem 220
 B.3 Solution of the Second Control Problem 224
 B.4 Pontryagin’s Maximum Principle 229
C List of Authors ... 231

References ... 233

Index .. 235
Dynamical Systems
Stability, Controllability and Chaotic Behavior
Krabs, W.
2010, X, 238 p., Hardcover
ISBN: 978-3-642-13721-1