Contents

1 Introduction ... 1
 1.1 General Introduction 1
 1.2 Aims and Motivation 6
 1.3 Outline .. 7
 References ... 7

2 Basics and Brillouin Light Scattering 9
 2.1 Elastic Waves in Condensed Matter. 9
 2.1.1 Elasticity Theory Basics 9
 2.1.2 Elastic Waves in Isotropic Media 14
 2.1.3 Spherical Waves 15
 2.2 Light Scattering Basics 16
 2.3 Brillouin Light Scattering 20
 2.3.1 BLS Basics 21
 2.3.2 BLS Instrumentation 25
 2.3.3 Vibrational Modes of Individual Particles 32
 References ... 34

3 Methods ... 35
 3.1 Vertical Lifting Deposition and Colloidal Crystals. 35
 3.2 Melt Compression 37
 3.3 Polymer and Colloid Characterization Techniques 38
 3.3.1 Photon Correlation Spectroscopy 38
 3.3.2 Electron Microscopy 39
 3.3.3 Differential Scanning Calorimetry 40
 3.3.4 Density Gradient Column 40
 3.3.5 Wide Angle X-ray Scattering 41
 3.3.6 UV/VIS Spectroscopy 41
 3.3.7 Gel Permeation Chromatography 42
 3.4 Theoretical Calculations 43
 3.4.1 Single-sphere Scattering Cross-section Calculations 44
4 The Vibrations of Individual Colloids

4.1 Introduction

4.2 Elastic Vibrations in Homogeneous Polymer Colloids

4.2.1 The ‘Music’ of the Spheres

4.2.2 The Influence of the Neighbors: Mixtures

4.2.3 The Influence of the Rigidity: Copolymers

4.2.4 The Influence of the Wave Vector: Suspensions

4.3 Elastic Vibrations in Nanostructured Colloids

4.3.1 The Influence of the Temperature: PS–SiO₂ Core–Shell Particles

4.3.2 The Influence of the Components: SiO₂–PMMA Core–Shell Particles

4.4 Materials

4.4.1 Homogeneous Polymer Colloids

4.4.2 Homogeneous Silica Colloids

4.4.3 PS–SiO₂ Core–Shell Particles

4.4.4 SiO₂–PMMA Core–Shell Particles

References

5 Phononic Behavior of Colloidal Systems

5.1 Introduction

5.1.1 The Phononic Band Diagram

5.1.2 The Effective Medium

5.1.3 Phononic Band Gaps

5.2 Effective Medium Velocity in Defect Doped Opals

5.3 Band Gaps in Polymer Opals and Disordered Systems

5.3.1 The Influence of the Order in Colloidal Systems

5.3.2 Influence of the Composition in Disordered Colloidal Systems

5.4 Band Gaps in SiO₂ Colloidal Systems

5.4.1 Phononic Behavior of Silica Suspensions

5.4.2 Silica–Poly(ethyl acrylate) Films (PhoXonics)

5.5 Materials

5.5.1 Melt Compressed Silica–Poly(ethyl acrylate) Films

References

6 Smaller than Colloids: Characterization of Stable Organic Glass

6.1 Introduction

6.2 BLS Experiments on IMC

References
High Frequency Acoustics in Colloid-Based Meso- and Nanostructures by Spontaneous Brillouin Light Scattering
Still, T.
2010, XX, 144 p. 57 illus., 7 illus. in color., Hardcover
ISBN: 978-3-642-13482-1