## Contents

1 Introduction .................................................... 1

  Annick Lesne and Paul Bourgine
  1.1 Fundamental Issues ................................. 1
  1.1.1 The Notion of Shape ............................... 1
  1.1.2 Some Paths to Explore the World of Shapes ............. 2
  1.1.3 Shapes and Their Causes ........................ 3
  1.1.4 Modelling Morphogenesis ........................... 3
  1.2 Morpho-Genesis ........................................ 4
  1.2.1 Shape-Generating Mechanisms ..................... 4
  1.2.2 Equilibrium, Out-of-Equilibrium and Far-from-Equilibrium Shapes .. 4
  1.2.3 Irreversibility ..................................... 5
  1.2.4 Self-Assembly and Self-Organisation ............... 5
  1.3 Instabilities, Phase Transitions and Symmetry Breaking ..... 6
  1.3.1 Phase Transitions, Bifurcations and Instabilities ...... 6
  1.3.2 Symmetry Breaking ................................. 7
  1.3.3 Emergence ......................................... 7
  1.3.4 Fractal Shapes ...................................... 8
  1.4 Inanimate or Living Shapes ............................ 9
  1.4.1 Some Questions ..................................... 9
  1.4.2 Are Living Shapes Special? ....................... 10
  1.4.3 Functional Shapes ................................... 10
  1.4.4 Genetic Programme, Self-Organisation and Epigenomics .. 11
  1.4.5 The Robustness and Variability of Living Shapes ...... 12
  1.5 Book Overview .......................................... 12
  References .................................................. 13

2 Ferrofluids: A Model System of Self-Organised Equilibrium ........ 15

  Jean-Claude Bacri and Florence Elias
  2.1 Introduction: Situation with Regard to the Other Chapters .... 15
  2.2 Physical Systems in Self-Organised Equilibrium .......... 15
  2.2.1 Examples of Self-Organised Physical Systems ........ 16
2.2.2 The Origin of Order ......................................... 19
2.2.3 The Bond Number ......................................... 21
2.2.4 Domain Size and Choice of Pattern ..................... 21
2.2.5 Summary .................................................. 22
2.3 Morphologies in Ferrofluids ................................ 22
  2.3.1 Ferrofluids: A Model System for Studying Structures .... 22
  2.3.2 Stripes and Bubbles, Foams and Rings in Ferrofluids ...... 26
  2.3.3 The Influence of History: Initial Conditions and Conditions of Formation ............................. 28
  2.3.4 The Source of Patterns: Instabilities ..................... 31
2.4 Conclusion .................................................. 37
References ....................................................... 38

3 Hierarchical Fracture Networks ............................... 41
  Steffen Bohn
  3.1 Introduction ................................................ 41
  3.2 The Formation of Hierarchical Fracture Networks .......... 42
  3.3 The Fracture Network as a Hierarchical Division of Space ..... 44
  3.4 A Characteristic Scale ..................................... 45
  3.5 Conclusion ................................................ 47

4 Liquid Crystals and Morphogenesis ............................ 49
  Yves Bouligand
  4.1 Shells and Series of Arches ................................ 49
  4.2 Helicoidal Plywood ........................................ 51
  4.3 Cholesteric Liquid Crystals and Stabilised Analogues ...... 53
  4.4 Specificity and Diversity of Liquid Crystals ................. 54
    4.4.1 Mesogenic Molecules .................................. 55
    4.4.2 Structure of Liquid Crystals ........................... 56
    4.4.3 Phase Transitions .................................... 57
  4.5 Liquid Crystals and Stabilised Analogues in Biology:
            A Widespread Phenomenon ................................ 58
    4.5.1 Muscles ................................................. 58
    4.5.2 Myelinic Figures and Fluid Cell Membranes .............. 59
    4.5.3 Stabilised Membranes .................................. 60
    4.5.4 Nematic and Cholesteric Analogues .................... 60
    4.5.5 The Limits of a Widespread Phenomenon ................. 60
  4.6 Liquid Crystalline Self-Assemblies ........................ 61
  4.7 Curvature and Structure .................................... 62
    4.7.1 Diversity of Curvatures in Liquid Crystals and Their Analogues ........................................ 62
    4.7.2 Geometry of the Different Curvatures .................. 64
    4.7.3 Elastic Coefficients and Spontaneous Curvatures ........ 68
  4.8 Lyotropic Systems and Cell Fluidity ....................... 69
8 From Epigenomic to Morphogenetic Emergence ......................................................... 143
Caroline Smet-Nocca, András Paldi, and Arndt Benecke

8.1 Genetic Inheritance, Regulation of Gene Expression, and Chromatin Dynamics ......................................................... 145
  8.1.1 Gene Transcription and the Regulation of Gene Expression ........................................ 145
  8.1.2 Genomic Structure and its Impact on Transcriptional Regulation ........................................ 146

8.2 Epigenetic Mechanisms, Epigenetic Inheritance and Cell Differentiation ......................................................... 149
  8.2.1 DNA Methylation: Epigenetic Marker of Transcriptional Repression ........................................ 149
  8.2.2 Structural and Functional Organisation of Chromatin: Spatio-Temporal Regulation ................. 152

8.3 The Link Between Epigenetic Information and the Regulation of Gene Expression ......................................................... 158
  8.3.1 The Link Between DNA Repair and Transcription ........................................ 158
  8.3.2 CBP/p300, HATs Involved in Cell Growth, Differentiation and Development ......................... 160
  8.3.3 Epigenetics and Oncogenesis ........................................ 161

8.4 Morphogenomics ......................................................... 163
References ......................................................... 166

9 Animal Morphogenesis ......................................................... 167
Nadine Peyriéras

9.1 The Acquisition of Cell Diversity ......................................................... 169
  9.1.2 The Interaction Between Cells and Their Environment and the “Inside-Outside” Hypothesis ................. 171
9.2 The Anatomical Tradition of Embryology, Identification of Symmetry Breaking and Characterisation of Morphogenetic Fields .................................................... 171
9.2.1 Symmetry-Breaking in Early Embryogenesis ............ 172
9.2.2 Formation of Boundaries and Compartments During Organogenesis ................................................. 175
9.3 The “Bottom-Up” Approach of Developmental Biology ........ 176
9.3.1 Dynamics of Molecular and Genetic Interactions in the Formation of Patterns ............................. 178
9.3.2 The Concept of Morphogen and Pattern Generation Through the Threshold Effect ......................... 179
9.3.3 The Formation of Somites in Vertebrates: A Model of Coupled Oscillators ........................................ 181
9.4 The Reconstruction of Cell Morphodynamics and the Revival of the Anatomical Tradition of Embryology .......... 184
9.4.1 Cell Movements and Deformations in Morphogenesis .... 184
9.4.2 Cell Adhesion and Biomechanical Constraints in the Embryo ............................................................. 185
9.4.3 The Tensegrity Model ............................................ 185
References .............................................................. 187

10 Phyllotaxis, or How Plants Do Maths When they Grow ........ 189
Stéphane Douady
10.1 Discovery ..................................................... 189
10.2 Why? .......................................................... 190
10.3 How? .......................................................... 192
10.4 Van Iterson’s Tree … Pruned! ................................. 194
10.5 Dynamics ...................................................... 196
10.6 Conclusion ..................................................... 197
References .............................................................. 198

11 The Logic of Forms in the Light of Developmental Biology and Palaeontology .............................................. 199
Didier Marchand
11.1 Introduction ................................................... 199
11.2 Palaeontology and Time ........................................ 200
11.3 From the Cell to the Multicellular Organism: An Ever More Complex Game of “Lego” ................................. 201
11.4 The Major Body Plans: In the Early Cambrian, Quite Everything Was Already in Place ................................. 202
11.5 The Phylum of Vertebrates: A Fine Example of Peramorphosis .............................................................. 204
11.6 The Anomalies of Development: An Opening Towards New Morphologies ............................................. 205
11.7 The Brain as the Last Space of Freedom ....................... 207
## 12 Forms Emerging from Collective Motion

Hugues Chaté and Guillaume Grégoire

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>211</td>
</tr>
<tr>
<td>12.2 Towards a Minimal Model</td>
<td>213</td>
</tr>
<tr>
<td>12.2.1 The Ingredients</td>
<td>213</td>
</tr>
<tr>
<td>12.2.2 Formalisation</td>
<td>214</td>
</tr>
<tr>
<td>12.2.3 The Results of Vicsek et al.</td>
<td>216</td>
</tr>
<tr>
<td>12.3 Forms in the Absence of Cohesion</td>
<td>218</td>
</tr>
<tr>
<td>12.3.1 Moving in Self-Organised Groups</td>
<td>218</td>
</tr>
<tr>
<td>12.3.2 Microscopic Trajectories and Forms</td>
<td>219</td>
</tr>
<tr>
<td>12.4 When Cohesion Is Present: Droplets in Motion</td>
<td>220</td>
</tr>
<tr>
<td>12.4.1 Phase Diagrams and Form of Droplets</td>
<td>220</td>
</tr>
<tr>
<td>12.4.2 Cohesion Broken During the Onset of Motion</td>
<td>221</td>
</tr>
<tr>
<td>12.5 Back to Nature</td>
<td>222</td>
</tr>
<tr>
<td>References</td>
<td>223</td>
</tr>
</tbody>
</table>

## 13 Systems of Cities and Levels of Organisation

Denise Pumain

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Three Levels of Observation of the Urban Fact</td>
<td>225</td>
</tr>
<tr>
<td>13.1.1 Emergent Properties at the City Level</td>
<td>226</td>
</tr>
<tr>
<td>13.1.2 The Structure of the System of Cities</td>
<td>228</td>
</tr>
<tr>
<td>13.2 A Functional Interpretation of the Hierarchical Ordering</td>
<td>231</td>
</tr>
<tr>
<td>13.2.1 Daily Life in the City</td>
<td>232</td>
</tr>
<tr>
<td>13.2.2 The Functions of the System of Cities</td>
<td>233</td>
</tr>
<tr>
<td>13.3 The Interactions that Construct the Levels</td>
<td>235</td>
</tr>
<tr>
<td>13.3.1 The Constituent Interactions of City Forms</td>
<td>237</td>
</tr>
<tr>
<td>13.3.2 The Constituent Interactions of Systems of Cities</td>
<td>239</td>
</tr>
<tr>
<td>13.4 Complex Systems Models for Urban Morphogenesis</td>
<td>242</td>
</tr>
<tr>
<td>13.4.1 Cities as Spatial Objects</td>
<td>243</td>
</tr>
<tr>
<td>13.4.2 Cities and Fractal Objects</td>
<td>244</td>
</tr>
<tr>
<td>13.4.3 From Support Space to Relational and Conforming Space</td>
<td>245</td>
</tr>
<tr>
<td>References</td>
<td>246</td>
</tr>
</tbody>
</table>

## 14 Levels of Organisation and Morphogenesis from the Perspective of D’Arcy Thompson

Yves Bouligand

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Games of Construction</td>
<td>251</td>
</tr>
<tr>
<td>14.1.1 Chemical Syntheses and Biosyntheses</td>
<td>252</td>
</tr>
<tr>
<td>14.1.2 Supramolecular Assemblies and their Lattices</td>
<td>254</td>
</tr>
<tr>
<td>14.1.3 Molecular and Supramolecular Models</td>
<td>256</td>
</tr>
<tr>
<td>14.2 Water Games</td>
<td>256</td>
</tr>
</tbody>
</table>
Contents

14.2.1 Hydrostatic Forms .................................. 257
14.2.2 Hydrodynamic Figures ............................... 258
14.2.3 Morphological Adaptations to the Hydrodynamics of the Environment ............................... 259
14.3 The Fragile Architectures of Diffusion ......................... 260
14.3.1 Hydrostatic Diffusion ................................ 260
14.3.2 Hydrodynamic Diffusion ............................... 261
14.4 Stabilisation and Reorganisation of Forms ................. 262
14.5 The Problem of Strong Local Curvature and New Prospects ........ 263
14.6 Particular and General Morphogenetic Theories .............. 265
14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis ........................................ 265
14.6.2 Symmetry Breaking and Differentiation ............... 267
14.6.3 New Prospects in Morphogenesis and the Concept of Viability ........................................ 270

References ..................................................... 271

15 The Morphogenetic Models of René Thom ......................... 273
Jean Petitot
15.1 General Content of the Model ................................ 273
15.2 Morphodynamics and Structural Stability .................. 275
15.3 The Theory of Dynamical Systems ......................... 276
15.4 The Theory of Singularities and “Elementary” Morphogenetic Models ........................................ 279
15.5 The Principles of Morphodynamic Models .................. 280
15.6 The Models of Morphogenesis ......................... 281
References ..................................................... 281

16 Morphogenesis, Structural Stability and Epigenetic Landscape ...... 283
Sara Franceschelli
16.1 The Correspondence ........................................ 283
16.2 Delbrück’s Model .......................................... 286
16.3 Structural Stability and Morphogenetic Field ............. 287
16.4 Epigenetic Landscape: A Mental Picture, a Metaphor . . . 288
16.5 Interpretations .............................................. 292
References ..................................................... 292

17 Morphological and Mutational Analysis: Tools for the Study of Morphogenesis ........................................ 295
Jean-Pierre Aubin and Annick Lesne
17.1 Objectives ................................................ 295
17.2 Motivations .............................................. 297
17.2.1 Problems of Co-Viability ......................... 297
17.2.2 Biological Morphogenesis ......................... 299
## Contents

17.2.3  Image Processing ................................... 300  
17.2.4  Shape Optimisation .................................. 300  
17.2.5  Dynamic Economics .................................. 300  
17.2.6  Front Propagation .................................... 301  
17.2.7  Visual Robotics ....................................... 301  
17.2.8  Interval Analysis ..................................... 301  
17.3  The Genesis of Morphological Analysis ................... 301  
17.4  From Shape Optimisation to Set-Valued Analysis .......... 302  
17.5  Velocities of Tubes as Mutations ......................... 306  
17.6  Mutational Analysis ...................................... 306  
17.7  Morphological Equations .................................. 308  
17.8  Embryogenesis of the Zebrafish ........................... 311  
References ..................................................... 312  

18  Computer Morphogenesis .................................... 315  
Jean-Louis Giavitto and Antoine Spicher  
18.1  Explaining Living Matter by Understanding Development .... 315  
18.1.1  The Animal-Machine ................................... 315  
18.1.2  From Self-Reproduction to Development .................. 317  
18.1.3  Development as a Dynamical System ..................... 318  
18.1.4  What Formalism for Dynamical Systems with Dynamical  
        Structure? ............................................. 321  
18.2  Rewriting Systems ....................................... 323  
18.2.1  Introduction ......................................... 323  
18.2.2  Rewriting Systems and the Simulation of Dynamical  
        Systems ............................................... 325  
18.3  Multiset Rewriting and Chemical Modelling ................ 326  
18.3.1  Some Examples of Application .......................... 328  
18.3.2  Păun Systems and Compartmentalisation ................. 329  
18.3.3  In Parenthesis: The Application to Parallel Programming .. 331  
18.4  Lindenmayer Systems and the Growth of Linear Structures ... 332  
18.4.1  Growth of a Filamentous Structure ..................... 332  
18.4.2  Development of a Branching Structure ................... 334  
18.5  Beyond Linear Structures: Calculating a Form in Order  
      to Understand It ....................................... 335  
18.5.1  Simulation and Explanation ............................ 335  
18.5.2  Giving Form to a Population of Autonomous Agents ........ 336  
References ..................................................... 337  

Index ............................................................. 341
Morphogenesis
Origins of Patterns and Shapes
Bourgine, P.; LESNE, A. (Eds.)
2011, XVII, 346 p., Hardcover
ISBN: 978-3-642-13173-8