1 Introduction .. 1
Annick Lesne and Paul Bourgine
1.1 Fundamental Issues .. 1
 1.1.1 The Notion of Shape 1
 1.1.2 Some Paths to Explore the World of Shapes 2
 1.1.3 Shapes and Their Causes 3
 1.1.4 Modelling Morphogenesis 3
1.2 Morpho-Genesis .. 4
 1.2.1 Shape-Generating Mechanisms 4
 1.2.2 Equilibrium, Out-of-Equilibrium and
 Far-from-Equilibrium Shapes 4
 1.2.3 Irreversibility ... 5
 1.2.4 Self-Assembly and Self-Organisation 5
1.3 Instabilities, Phase Transitions and Symmetry Breaking 6
 1.3.1 Phase Transitions, Bifurcations and Instabilities .. 6
 1.3.2 Symmetry Breaking 7
 1.3.3 Emergence ... 7
 1.3.4 Fractal Shapes .. 8
1.4 Inanimate or Living Shapes 9
 1.4.1 Some Questions .. 9
 1.4.2 Are Living Shapes Special? 10
 1.4.3 Functional Shapes 10
 1.4.4 Genetic Programme, Self-Organisation and Epigenomics ... 11
 1.4.5 The Robustness and Variability of Living Shapes 12
1.5 Book Overview .. 12
References .. 13

2 Ferrofluids: A Model System of Self-Organised Equilibrium 15
Jean-Claude Bacri and Florence Elias
2.1 Introduction: Situation with Regard to the Other Chapters 15
2.2 Physical Systems in Self-Organised Equilibrium 15
 2.2.1 Examples of Self-Organised Physical Systems 16
Contents

2.2.2 The Origin of Order ... 19
2.2.3 The Bond Number ... 21
2.2.4 Domain Size and Choice of Pattern 21
2.2.5 Summary ... 22

2.3 Morphologies in Ferrofluids 22
2.3.1 Ferrofluids: A Model System for Studying Structures 22
2.3.2 Stripes and Bubbles, Foams and Rings in Ferrofluids 26
2.3.3 The Influence of History: Initial Conditions and Conditions of Formation .. 28
2.3.4 The Source of Patterns: Instabilities 31

2.4 Conclusion ... 37

References .. 38

3 Hierarchical Fracture Networks 41
Steffen Bohn
3.1 Introduction ... 41
3.2 The Formation of Hierarchical Fracture Networks 42
3.3 The Fracture Network as a Hierarchical Division of Space 44
3.4 A Characteristic Scale .. 45
3.5 Conclusion ... 47

4 Liquid Crystals and Morphogenesis 49
Yves Bouligand
4.1 Shells and Series of Arches 49
4.2 Helicoidal Plywood ... 51
4.3 Cholesteric Liquid Crystals and Stabilised Analogues 53
4.4 Specificity and Diversity of Liquid Crystals 54
4.4.1 Mesogenic Molecules .. 55
4.4.2 Structure of Liquid Crystals 56
4.4.3 Phase Transitions .. 57
4.5 Liquid Crystals and Stabilised Analogues in Biology: A Widespread Phenomenon .. 58
4.5.1 Muscles ... 58
4.5.2 Myelinic Figures and Fluid Cell Membranes 59
4.5.3 Stabilised Membranes 60
4.5.4 Nematic and Cholesteric Analogues 60
4.5.5 The Limits of a Widespread Phenomenon 60

4.6 Liquid Crystalline Self-Assemblies 61
4.7 Curvature and Structure .. 62
4.7.1 Diversity of Curvatures in Liquid Crystals and Their Analogues ... 62
4.7.2 Geometry of the Different Curvatures 64
4.7.3 Elastic Coefficients and Spontaneous Curvatures 68
4.8 Lyotropic Systems and Cell Fluidity 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Liquids with Parallel Surfaces and the Geometrical Origin of Forms</td>
<td>72</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Caps and Saddles: Elliptic or Hyperbolic Surfaces</td>
<td>73</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Dupin Cyclides in Liquid Crystals</td>
<td>74</td>
</tr>
<tr>
<td>4.10</td>
<td>Germs and Textures of Liquid Crystals: Their Biological Analogues</td>
<td>77</td>
</tr>
<tr>
<td>4.11</td>
<td>Topological Nature of Liquid Crystalline Textures</td>
<td>81</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Möbius Strips</td>
<td>81</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Pairs of Interlocking Rings</td>
<td>82</td>
</tr>
<tr>
<td>4.12</td>
<td>Liquid Crystals and Mechanical Clock Movements</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>Biological Self-Organisation by Way of the Dynamics of Reactive Processes</td>
<td>87</td>
</tr>
<tr>
<td>James Tabony</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Self-Organisation by Dynamic Processes in Physical Systems</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>Self-Organisation in Colonies of Living Organisms</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Self-Organisation by Reaction and Diffusion: Stripes in a Test-Tube</td>
<td>93</td>
</tr>
<tr>
<td>5.4</td>
<td>Microtubule Self-Organisation</td>
<td>97</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>Dunes, the Collective Behaviour of Wind and Sand, or: Are Dunes Living Beings?</td>
<td>107</td>
</tr>
<tr>
<td>Stéphane Douady and Pascal Hersen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Discovery</td>
<td>107</td>
</tr>
<tr>
<td>6.2</td>
<td>The Wind Drives the Sand ... Which Steals the Wind's Force as It Flies</td>
<td>107</td>
</tr>
<tr>
<td>6.3</td>
<td>The Minimal Dune</td>
<td>108</td>
</tr>
<tr>
<td>6.4</td>
<td>The Wind Runs Over the Dune ... and Pushes It Along</td>
<td>109</td>
</tr>
<tr>
<td>6.5</td>
<td>Does the Wind Flow Make the Dune?</td>
<td>109</td>
</tr>
<tr>
<td>6.6</td>
<td>Understanding the Barchan Shape</td>
<td>111</td>
</tr>
<tr>
<td>6.7</td>
<td>The Paradox of Corridors ... or the Problem of Dunes Among Themselves</td>
<td>114</td>
</tr>
<tr>
<td>6.8</td>
<td>The Wind is Never Constant</td>
<td>114</td>
</tr>
<tr>
<td>6.9</td>
<td>Dunes are Not Isolated</td>
<td>115</td>
</tr>
<tr>
<td>6.10</td>
<td>The Grain of Sand, the Dune and the Corridor of Dunes ... What About the Individual, the Flows and the Form?</td>
<td>116</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>Morphodynamics of Secretory Endomembranes</td>
<td>119</td>
</tr>
<tr>
<td>François Képès</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Some Preliminary Reminders</td>
<td>119</td>
</tr>
<tr>
<td>7.2</td>
<td>Introduction</td>
<td>120</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Cell Membrane and Translocation</td>
<td>120</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Eukaryotic Secretory Pathway</td>
<td>121</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Other Eukaryotic Compartments</td>
<td>123</td>
</tr>
</tbody>
</table>
8 From Epigenomic to Morphogenetic Emergence .. 143
Caroline Smet-Nocca, András Paldi, and Arndt Benecke
8.1 Genetic Inheritance, Regulation of Gene Expression, and Chromatin Dynamics .. 145
8.1.1 Gene Transcription and the Regulation of Gene Expression 145
8.1.2 Genomic Structure and its Impact on Transcriptional Regulation ... 146
8.2 Epigenetic Mechanisms, Epigenetic Inheritance and Cell Differentiation ... 149
8.2.1 DNA Methylation: Epigenetic Marker of Transcriptional Repression .. 149
8.2.2 Structural and Functional Organisation of Chromatin: Spatio-Temporal Regulation .. 152
8.3 The Link Between Epigenetic Information and the Regulation of Gene Expression .. 158
8.3.1 The Link Between DNA Repair and Transcription 158
8.3.2 CBP/p300, HATs Involved in Cell Growth, Differentiation and Development ... 160
8.3.3 Epigenetics and Oncogenesis .. 161
8.4 Morphogenomics .. 163
References .. 166

9 Animal Morphogenesis .. 167
Nadine Peyriéras
9.1 The Acquisition of Cell Diversity .. 169
9.1.2 The Interaction Between Cells and Their Environment and the “Inside-Outside” Hypothesis ... 171
9.2 The Anatomical Tradition of Embryology, Identification of Symmetry Breaking and Characterisation of Morphogenetic Fields .. 171
9.2.1 Symmetry-Breaking in Early Embryogenesis 172
9.2.2 Formation of Boundaries and Compartments During Organogenesis ... 175
9.3 The “Bottom-Up” Approach of Developmental Biology 176
9.3.1 Dynamics of Molecular and Genetic Interactions in the Formation of Patterns 178
9.3.2 The Concept of Morphogen and Pattern Generation Through the Threshold Effect 179
9.3.3 The Formation of Somites in Vertebrates: A Model of Coupled Oscillators .. 181
9.4 The Reconstruction of Cell Morphodynamics and the Revival of the Anatomical Tradition of Embryology 184
9.4.1 Cell Movements and Deformations in Morphogenesis 184
9.4.2 Cell Adhesion and Biomechanical Constraints in the Embryo .. 185
9.4.3 The Tensegrity Model ... 185
References .. 187

10 Phyllotaxis, or How Plants Do Maths When they Grow 189
Stéphane Douady
10.1 Discovery ... 189
10.2 Why? ... 190
10.3 How? ... 192
10.4 Van Iterson’s Tree … Pruned! 194
10.5 Dynamics ... 196
10.6 Conclusion .. 197
References .. 198

11 The Logic of Forms in the Light of Developmental Biology and Palaeontology ... 199
Didier Marchand
11.1 Introduction ... 199
11.2 Palaeontology and Time ... 200
11.3 From the Cell to the Multicellular Organism: An Ever More Complex Game of “Lego” 201
11.4 The Major Body Plans: In the Early Cambrian, Quite Everything Was Already in Place 202
11.5 The Phylum of Vertebrates: A Fine Example of Peramorphosis 204
11.6 The Anomalies of Development: An Opening Towards New Morphologies .. 205
11.7 The Brain as the Last Space of Freedom 207
11.8 Conclusion ..208
References ...209

12 Forms Emerging from Collective Motion ..211
Hugues Chaté and Guillaume Grégoire
12.1 Introduction ..211
12.2 Towards a Minimal Model ..213
 12.2.1 The Ingredients ..213
 12.2.2 Formalisation ..214
 12.2.3 The Results of Vicsek et al. ..216
12.3 Forms in the Absence of Cohesion ..218
 12.3.1 Moving in Self-Organised Groups ..218
 12.3.2 Microscopic Trajectories and Forms ..219
12.4 When Cohesion Is Present: Droplets in Motion ..220
 12.4.1 Phase Diagrams and Form of Droplets ..220
 12.4.2 Cohesion Broken During the Onset of Motion ..221
12.5 Back to Nature ..222
References ...223

13 Systems of Cities and Levels of Organisation ..225
Denise Pumain
13.1 Three Levels of Observation of the Urban Fact ..226
 13.1.1 Emergent Properties at the City Level ..226
 13.1.2 The Structure of the System of Cities ..228
13.2 A Functional Interpretation of the Hierarchical Ordering ..231
 13.2.1 Daily Life in the City ..232
 13.2.2 The Functions of the System of Cities ..233
13.3 The Interactions that Construct the Levels ..235
 13.3.1 The Constituent Interactions of City Forms ..237
 13.3.2 The Constituent Interactions of Systems of Cities ..239
13.4 Complex Systems Models for Urban Morphogenesis ..242
 13.4.1 Cities as Spatial Objects ..243
 13.4.2 Cities and Fractal Objects ..244
 13.4.3 From Support Space to Relational and Conforming Space ..245
References ...246

14 Levels of Organisation and Morphogenesis from the Perspective of D’Arcy Thompson ..251
Yves Bouligand
14.1 Games of Construction ..252
 14.1.1 Chemical Syntheses and Biosyntheses ..252
 14.1.2 Supramolecular Assemblies and their Lattices ..254
 14.1.3 Molecular and Supramolecular Models ..256
14.2 Water Games ..256
14.2.1 Hydrostatic Forms ... 257
14.2.2 Hydrodynamic Figures 258
14.2.3 Morphological Adaptations to the Hydrodynamics of the Environment ... 259
14.3 The Fragile Architecture of Diffusion 260
14.3.1 Hydrostatic Diffusion .. 260
14.3.2 Hydrodynamic Diffusion 261
14.4 Stabilisation and Reorganisation of Forms 262
14.5 The Problem of Strong Local Curvature and New Prospects .. 263
14.6 Particular and General Morphogenetic Theories 265
 14.6.1 The Direct or Indirect Role of the Genome in Morphogenesis .. 265
 14.6.2 Symmetry Breaking and Differentiation 267
 14.6.3 New Prospects in Morphogenesis and the Concept of Viability ... 270
References ... 271

15 The Morphogenetic Models of René Thom 273
Jean Petitot
 15.1 General Content of the Model 273
 15.2 Morphodynamics and Structural Stability 275
 15.3 The Theory of Dynamical Systems 276
 15.4 The Theory of Singularities and “Elementary” Morphogenetic Models ... 279
 15.5 The Principles of Morphodynamic Models 280
 15.6 The Models of Morphogenesis 281
References ... 281

16 Morphogenesis, Structural Stability and Epigenetic Landscape ... 283
Sara Franceschelli
 16.1 The Correspondence ... 283
 16.2 Delbrück’s Model .. 286
 16.3 Structural Stability and Morphogenetic Field 287
 16.4 Epigenetic Landscape: A Mental Picture, a Metaphor … of What? .. 288
 16.5 Interpretations .. 292
References ... 292

17 Morphological and Mutational Analysis: Tools for the Study of Morphogenesis .. 295
Jean-Pierre Aubin and Annick Lesne
 17.1 Objectives ... 295
 17.2 Motivations .. 297
 17.2.1 Problems of Co-Viability 297
 17.2.2 Biological Morphogenesis 299
17.2.3 Image Processing .. 300
17.2.4 Shape Optimisation 300
17.2.5 Dynamic Economics 300
17.2.6 Front Propagation 301
17.2.7 Visual Robotics .. 301
17.2.8 Interval Analysis 301
17.3 The Genesis of Morphological Analysis 301
17.4 From Shape Optimisation to Set-Valued Analysis 302
17.5 Velocities of Tubes as Mutations 306
17.6 Mutational Analysis 306
17.7 Morphological Equations 308
17.8 Embryogenesis of the Zebrafish 311
References .. 312

18 Computer Morphogenesis 315
Jean-Louis Giavittto and Antoine Spicher
18.1 Explaining Living Matter by Understanding Development ... 315
 18.1.1 The Animal-Machine 315
 18.1.2 From Self-Reproduction to Development 317
 18.1.3 Development as a Dynamical System 318
 18.1.4 What Formalism for Dynamical Systems with Dynamical
 Structure? .. 321
18.2 Rewriting Systems ... 323
 18.2.1 Introduction .. 323
 18.2.2 Rewriting Systems and the Simulation of Dynamical
 Systems ... 325
18.3 Multiset Rewriting and Chemical Modelling 326
 18.3.1 Some Examples of Application 328
 18.3.2 Păun Systems and Compartmentalisation 329
 18.3.3 In Parenthesis: The Application to Parallel Programming . 331
18.4 Lindenmayer Systems and the Growth of Linear Structures ... 332
 18.4.1 Growth of a Filamentous Structure 332
 18.4.2 Development of a Branching Structure 334
18.5 Beyond Linear Structures: Calculating a Form in Order
 to Understand It 335
 18.5.1 Simulation and Explanation 335
 18.5.2 Giving Form to a Population of Autonomous Agents 336
References .. 337

Index .. 341
Morphogenesis
Origins of Patterns and Shapes
Bourgine, P.; LESNE, A. (Eds.)
2011, XVII, 346 p., Hardcover
ISBN: 978-3-642-13173-8