Contents

Context, explanations, abbreviations, units.................................1

1 Civilization based on metals .. 5
1.1 Past and present sources of industrial metals.......................... 5
1.2 Metal prices .. 10
1.3 Future metal supplies.. 13
1.4 Conclusion: future supplies of metals and giant deposits 29

2 Data on metallic deposits and magnitude categories: the giant and world class deposits ... 37
2.1 Data sources and databases... 37
2.2 Giant and world class ore deposits: definition and characteristics .. 40
2.3 Dimension, complexity and hierarchy of metallic deposits, districts .. 46
2.4 The share of “giant” metal accumulations in global metal supplies ... 49

3 From trace metals to giant deposits ... 59
3.1 Introduction .. 59
3.2 Extraterrestrial metals and ores resulting from meteorite impact ... 60
3.3 Lithospheric evolution and ore formation related to geochemical backgrounds ... 63

4 Geological divisions that contain ore giants: introduction and the role of mantle .. 69
4.1 Earth geodynamics, plate tectonics, and metallogensis 70
4.2 Earth’s mantle and its role in terrestrial (crustal) lithogenesis and metallogensis ... 71
4.3 Organization of chapters in the descriptive Part II of this book ... 76

5 Oceans and young island arc systems 81
5.1 Oceanic crust, ocean floor ... 82
5.2 Intraplate volcanic islands, seamounts and plateaus on oceanic crust .. 87
5.3 Sea water as a source of metals .. 87
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Ocean floor sediments</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Active to “young” (pre-orogenic) convergent plate margins on sea floor and in islands</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>Island arc metallogeny and giant deposits</td>
<td>91</td>
</tr>
<tr>
<td>5.7</td>
<td>Island arc-trench subenvironments and ore formation</td>
<td>94</td>
</tr>
<tr>
<td>5.8</td>
<td>Magmatic (volcano-plutonic) systems in island arcs</td>
<td>96</td>
</tr>
<tr>
<td>5.9</td>
<td>Back-arcs (marginal seas), inter-arcs, and other extensional basins</td>
<td>103</td>
</tr>
<tr>
<td>5.10</td>
<td>Magnetite beach sands</td>
<td>107</td>
</tr>
<tr>
<td>6</td>
<td>Andean-type convergent continental margins (upper volcanic-sedimentary level)</td>
<td>109</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>109</td>
</tr>
<tr>
<td>6.2</td>
<td>Metals fluxing and metallogensis</td>
<td>113</td>
</tr>
<tr>
<td>6.3</td>
<td>Geothermal systems on land and in the shallow subsurface</td>
<td>129</td>
</tr>
<tr>
<td>6.4</td>
<td>High-sulfidation epithermal ores</td>
<td>132</td>
</tr>
<tr>
<td>6.5</td>
<td>Low sulfidation epithermal ores</td>
<td>145</td>
</tr>
<tr>
<td>7</td>
<td>Cordilleran granitoids in convergent continental margins (lower, plutonic levels)</td>
<td>169</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>169</td>
</tr>
<tr>
<td>7.2</td>
<td>Metallogeny</td>
<td>170</td>
</tr>
<tr>
<td>7.3</td>
<td>Porphyry deposits: Cu, Cu–Mo, Au</td>
<td>173</td>
</tr>
<tr>
<td>7.4</td>
<td>Stockwork molybdenum deposits</td>
<td>227</td>
</tr>
<tr>
<td>7.5</td>
<td>Stockwork, vein and skarn Mo-W-Bi</td>
<td>236</td>
</tr>
<tr>
<td>7.6</td>
<td>Scheelite skarn deposits</td>
<td>238</td>
</tr>
<tr>
<td>7.7</td>
<td>Cordilleran Pb–Zn–Ag (Cu) deposits</td>
<td>241</td>
</tr>
<tr>
<td>7.8</td>
<td>Hydrothermal Fe, Mn, Sb, Sn, B, U, Th deposits in, and associated with, Cordilleran granitoids</td>
<td>253</td>
</tr>
<tr>
<td>7.9</td>
<td>Carlin-type micron-size Au (As, Hg, Sb, Tl) deposits</td>
<td>255</td>
</tr>
<tr>
<td>8</td>
<td>Intracratic (intraplate) orogens, granites, hydrothermal deposits</td>
<td>263</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>263</td>
</tr>
<tr>
<td>8.2</td>
<td>Massif anorthosite association: Fe–Ti–V and Ni–Cu deposits</td>
<td>271</td>
</tr>
<tr>
<td>8.3</td>
<td>Ores closely associated with granites & pegmatites</td>
<td>274</td>
</tr>
<tr>
<td>8.4</td>
<td>Mesothermal gold</td>
<td>301</td>
</tr>
<tr>
<td>8.5</td>
<td>Dominantly orogenic metamorphic-hydrothermal Au deposits</td>
<td>312</td>
</tr>
<tr>
<td>8.6</td>
<td>Gold placers</td>
<td>320</td>
</tr>
<tr>
<td>8.7</td>
<td>(Syn)orogenic Sb and Hg deposits</td>
<td>323</td>
</tr>
<tr>
<td>8.8</td>
<td>Pb, Zn, Ag veins and replacements</td>
<td>332</td>
</tr>
</tbody>
</table>
9 Volcano-sedimentary orogens ... 341

9.1 Introduction ... 341
9.2 Ophiolite allochthons, melanges and alpine serpentinites......... 346
9.3 Oceanic successions ... 352
9.4 Mafic and bimodal marine volcanic-sedimentary successions353
9.5 Differentiated mafic-ultramafic intrusions (Alaska-Urals type)...367
9.6 Calc-alkaline and shoshonitic volcano-sedimentary successions ...369
9.7 Miscellaneous metallic ores ... 374

10 Precambrian greenstone-granite terrains 375

10.1 Introduction .. 375
10.2 Komatiite association and Ni ores 380
10.3 Early Proterozoic paleo-ophiolites 387
10.4 Mafic and bimodal greenstone sequences: Fe ores in banded iron formations ... 388
10.5 VMS deposits in bimodal volcanic-sedimentary association 391
10.6 Granitoid plutons in greenstone setting and older Precambrian “porphyry” deposits ... 399
10.7 (Syn)orogenic hydrothermal Au-(As, Sb, Cu) in greenstone terrains .. 401
10.8 Synorogenic Cu (U, Ni, Au, Ag) deposits overprinting greenstone belts ... 420
10.9 Ores in late orogenic sedimentary rocks in greenstone belts 421

11 Proterozoic-style intracratonic orogens and basins: extension, sedimentation, magmatism 425

11.1 Introduction ... 425
11.2 Metallogeny and giant deposits .. 428
11.3 Sedex concept applied to Proterozoic Pb–Zn–Ag deposits 433
11.4 Strata controlled Proterozoic copper deposits in (meta)sedimentary rocks ... 437
11.5 Au and U in quartz-rich conglomerates (Witwatersrand-type)...... 445
11.6 Fe in Superior-type banded iron formations (BIF) 454
11.7 Fe (BIF) and Mn in diamicites .. 466
11.8 Bedded and residual Mn deposits 469
11.9 Miscellaneous, complex Zn, Pb, Cu, Co, V, Ag, Ge, Ga, (U) deposits in Proterozoic sedimentary rocks 472
11.10 Oxidic (nonsulfide) Zn and Pb deposits 475
11.11 Unconformity uranium deposits 477
11.12 Hydrothermal Fe oxide deposits with Cu, or U, or Au, or REE: the IOCG group ... 480
Contents

12 Rifts, paleorifts, rifted margins, anorogenic and alkaline magmatism

12.1 Introduction ... 493
12.2 Young rifts, hydrothermal activity 496
12.3 Mantle plumes, continental breakup, rifted continental margins 498
12.4 Plateau (flood) basalts .. 502
12.5 Diabase, gabbro, rare peridotite dikes and sills 508
12.6 Bushveld-style layered intrusions 511
12.7 Sudbury complex Ni, Cu, Co, PGE, Ontario: an enigma related to meteorite impact 524
12.8 Alkaline magmatic association 530
12.9 Carbonatites ... 542

13 Sedimentary associations and regolith

13.1 Introduction ... 551
13.2 Marine clastics .. 553
13.3 Combined clastic and chemical bedded sedimentary deposits ... 559
13.4 Marine carbonates and evaporites 583
13.5 Marine evaporites and ores .. 601
13.6 Hydrocarbons as a source of metals 603
13.7 Ores in regolith and continental sediments 604
13.8 Anthropogenic metal sources ... 637

14 Higher-grade metamorphic associations

14.1 Introduction ... 641
14.2 Metallogeny ... 643
14.3 High-grade associations and ores 645
14.4 High-grade metamorphosed banded iron formations (BIF) .. 648
14.5 Pb–Zn–Ag sulfide orebodies in gneiss >> marble, Ca–Mg–Mn silicates: (Broken Hill-type) 649
14.6 Zn, Pb sulfides and Zn-Mn oxides in marble and Ca–Mg silicate hosts 653
14.7 Zn, Cu, Pb sulfide deposits in gneiss, schist, marble (meta-VMS?) .. 656
14.8 Disseminated Cu sulfide deposits in gneiss, schist and marble .. 658
14.9 Scheelite, uranian phosphates, magnesite, borates in marble and Ca–Mg silicate gneiss 661
14.10 High-grade metamorphic mafic–ultramafic–association ... 662
14.11 Retrograde metamorphosed and metasomatized mineralized structures 668
15 Giant deposits in geological context677

15.1 Origin of the giant deposits.................................677
15.2 Giant metallic deposits: geotectonic setting693
15.3 Giant metal accumulations in geological time.............694
15.4 Why ore “giants” are so big and are where they are?699

16 Giant deposits: industry, economics, politics703

16.1 Historical background..703
16.2 Giant deposits and corporations............................707
16.3 “Ore giants” and economics...............................712
16.4 Investment risk in exploration and mining..............717

17 Finding or acquiring giant deposits725

17.1 Introduction ..725
17.2 History of discovery of giant ore deposits/districts732
17.3 Acquiring giant deposits for tomorrow...............742

Epilogue...749

References ...755

Index of mineral deposits...827

Subject index..835

APPENDIX: Database of significant metallic accumulations...849
Giant Metallic Deposits
Future Sources of Industrial Metals
Laznicka, P.
2010, XII, 949 p., Hardcover
ISBN: 978-3-642-12404-4