Contents

1 Introduction and State-of-the-Art
F. Rustichelli, J.J. Skrzypek 1
1.1 Innovative Materials at Different Scales 1
1.2 Improved Physical Properties and Material Functionality at
Atomic Scales and Nanoscales 4
1.2.1 Intermetallics 4
1.2.2 Nanomaterials and Nanocomposites 4
1.2.3 Nanomaterials and Nanocomposites for
Bioapplications and Medical Applications 9
1.3 Improved Material Functionality at the Microscale or Mesoscale
1.3.1 Metal Matrix Composites MMC 10
1.3.2 Ceramic Matrix Composites CMC 13
1.4 Multifunctional Structures at the Macrolevel 14
1.4.1 Functionally Graded Coatings (FGC) for Thermal
(TBC), Wear (WBC), and Oxidation (OBC) Barriers 14
1.4.2 Fracture Resistance of FGM and TBCs 15

2 X-ray and Neutron Scattering
F. Fiori, F. Spinozzi 17
2.1 Unperturbed Beams 17
2.2 Interactions ... 19
2.2.1 X-rays ... 19
2.2.2 Neutrons ... 25
2.3 Introduction to Crystallography 29
2.3.1 Monodimensional Array of Atoms 29
2.3.2 Three-Dimensional Array of Atoms 30
2.3.3 The Reciprocal Lattice 31
2.3.4 Crystals ... 31
2.3.5 The Ideal Paracrystal 32
2.4 Introduction to Powder Diffraction 34
2.4.1 Bragg’s Law ... 34
3 Microstructural Investigations by Small Angle Scattering of Neutrons and X-rays
F. Fiori, F. Spinozzi ... 35
3.1 Introduction .. 35
3.2 Theoretical Basis .. 35
 3.2.1 Cross Sections .. 35
 3.2.2 Two-Phase Model ... 36
 3.2.3 Guinier’s and Porod’s Approximations 37
 3.2.4 The Kratky Plot and Porod’s Invariant 38
 3.2.5 Non-diluted Systems .. 38
3.3 Experimental Methods ... 39
 3.3.1 Experimental Set-Up ... 39
 3.3.2 Data Analysis ... 40
 3.3.3 Grazing Incidence Small-Angle X-ray Scattering (GISAXS) ... 41
3.4 A Classical Application .. 42
3.5 Applications to Innovative Materials 45
 3.5.1 Carbon Nanotubes: Single-Walled and Multi-Walled Carbon Nanotubes ... 45
 3.5.2 Nanocomposites ... 48
 3.5.3 Materials for Fuel Cells .. 56
 3.5.4 Biomaterials ... 63
 3.5.5 Electronic Devices: Nanoline Gratings 67
 3.5.6 Advanced Light Alloys .. 69
 3.5.7 Applications of Grazing Incidence Small-Angle X-ray Scattering ... 73

4 Residual Stress Analysis by Neutron and X-ray Diffraction
G. Albertini, E. Girardin, A. Manescu 79
4.1 Residual Stress ... 79
 4.1.1 Basis on Strain and Stress Evaluation by Using Neutron and X-ray Beams ... 81
 4.1.2 Other Techniques of Strain and Stress Evaluation by Using Neutron and X-ray Diffraction ... 88
 4.1.3 Experimental Facilities .. 91
4.2 Applications ... 91
 4.2.1 Applications to Classic Materials 94
 4.2.2 Applications to Innovative Materials 110

5 Three-Dimensional Imaging by Microtomography of X-ray Synchrotron Radiation and Neutrons
A. Giuliani, V. Komlev, F. Rustichelli 123
5.1 Introduction to Three-Dimensional Imaging by X-ray Synchrotron Radiation Microtomography ... 123
5.2 Application of X-ray Computed Microtomography for the Investigation of Metallic Foams, Composites, Biomaterials, Interfacial Properties, In-situ Transformation and Damage

5.2.1 Foams for Advanced Technological Applications

5.2.2 Sintering Processes

5.2.3 Composite Materials

5.2.4 Biomaterials

5.2.5 Cell Tracking

5.2.6 Microstructural Investigations of Native Bone

5.2.7 Other Applications

5.3 Introduction to Three-Dimensional Imaging by Neutron Tomography

5.4 Application of Neutron Tomography for the Investigation of Fuel Cells, Foams for Advanced Technological Applications, Composites, Biomaterials and Historical Artefacts

5.4.1 Fuel Cells

5.4.2 Metallic Foams for Advanced Technological Applications

5.4.3 Composites

5.4.4 Biomaterials

5.4.5 Cultural Heritage Items

5.5 Other Tomographic Techniques

6 Constitutive Models for Analysis and Design of Multifunctional Technological Materials

A.W. Ganczarski, H. Egner, A. Muc, J.J. Skrzypek

6.1 Constitutive Material Modeling at the Nanoscale

6.1.1 Interatomic Potentials in CNTs

6.1.2 Numerical Modeling of CNTs

6.1.3 Numerical Results

6.2 Constitutive Modeling at Microscale and Macroscale

6.2.1 Anisotropic Elastic Material Models – Application to Composites

6.2.2 Elastic-Damage Material Models – Effective Elastic Stiffness or Compliance Matrices

6.2.3 Elastic-Plastic Material Models – Plastic Anisotropy and Plastic Hardening

6.2.4 Constitutive Equations of Plastic Hardening

6.2.5 Incremental Constitutive Equations of Elastoplasticity

6.3 Modeling Multidissipative Materials

6.3.1 Coupled Nonlinear Damage–Plasticity Model

6.3.2 Coupled Thermal Damage–Plasticity Model

M. Cegielski, S. Hernik, M. Kula, M. Oleksy

7.1 Application of the Concept of Continuous Damage Deactivation to Modeling of the Low Cycle Fatigue of Aluminum Alloy Al-2024

7.1.1 Experiment of Low Cycle Fatigue of Aluminum Alloy Al-2024

7.1.2 Effect of Continuous Damage Deactivation

7.1.3 Modeling of Damage Affected Plastic Flow

7.1.4 Results

7.2 Modeling the FGM A356R Brake Disk Against Global Thermoelastic Instability (Hot-Spot)

7.2.1 Preliminaries

7.2.2 Stability of a Brake Disk Made of Stainless Steel ASTM-321

7.2.3 Stability of a Brake Disk Made of Homogeneous A356R Composite

7.2.4 Stability of a Brake Disk Made of Functionally Graded Composite A356R

7.2.5 Advantages of Application of Functionally Graded Materials for the Design of Brake Disks Against Hot-Spots

7.2.6 Conclusions

7.3 Modeling Wear Resistance of a Piston Sleeve Made of MMC A356R

7.3.1 Model

7.3.2 Results

7.4 Finite Element Modeling of the CrN/FGM/W300 and CrN/Cr/W300 Architectures

7.4.1 Plies Problem Formulation and Materials

7.4.2 Finite Element Modeling

7.4.3 Loads and Boundary Conditions

7.4.4 Thermal Ratchetting

7.4.5 Architecture Dependent Results

7.4.6 Possible Extensions

7.5 Modelling of the ZrO₂/FGM/316L Screen Against Thermal Cycles

7.5.1 Introduction

7.5.2 Constitutive Equations of the Elastic-Plastic Damage Material Model

7.5.3 Model – Geometry and Boundary Conditions

7.5.4 Manufacturing Phase Analysis
7.5.5 Working Phase Analysis 253
7.5.6 Conclusions ... 254

References .. 255

Index ... 265
Innovative Technological Materials
Structural Properties by Neutron Scattering, Synchrotron Radiation and Modeling
Skrzypek, J.; Rustichelli, F. (Eds.)
2010, XXII, 279 p., Hardcover
ISBN: 978-3-642-12058-9