Contents

1 Automotive Development Processes ... 1
 1.1 Manifold Requirements in the Past and in the Future 3
 1.2 The Process of Automotive Development 11
 1.2.1 Project Periods. ... 13
 1.2.2 Phases of Automotive Development 14
 1.3 Application of CAD in Automotive Development 21
 References .. 23

2 Overview of Virtual Product Development 25
 2.1 Development of Mechanical Products 25
 2.2 Virtual Product Development 29
 2.2.1 Product Models .. 32
 2.2.2 CAD-CAE Workflows in Automotive Engineering 34
 2.2.3 Management of Product Data 43
 2.2.4 CAD-CAE Data Exchange 45
 2.2.5 Concepts of Collaborative Product Development 47
 References .. 49

3 Geometric Fundamentals .. 51
 3.1 The 3-Space, Transformations and Motions 52
 3.1.1 Planar Reflections .. 55
 3.1.2 Translations and Rotations 55
 3.1.3 Orientation .. 57
 3.1.4 Helical Displacements 59
 3.1.5 Euclidean Motions .. 60
 3.1.6 Some Fundamentals of Line Geometry 62
 3.2 Polynomials ... 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Curves</td>
<td>70</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Parametric Representation of a Curve</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Planar Curves</td>
<td>72</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Derivatives and Tangents</td>
<td>73</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Arc Length Parameter</td>
<td>76</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Curvature and Torsion</td>
<td>77</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Osculating Circle and Osculating Plane</td>
<td>78</td>
</tr>
<tr>
<td>3.3.7</td>
<td>The Frenet Frame</td>
<td>79</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Planar Algebraic Curves</td>
<td>81</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Rational Curves</td>
<td>82</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Second Order Curves</td>
<td>83</td>
</tr>
<tr>
<td>3.4</td>
<td>Freeform Curves</td>
<td>85</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Bézier Curves</td>
<td>86</td>
</tr>
<tr>
<td>3.4.2</td>
<td>B-Spline Curves</td>
<td>99</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Rational Freeform Curves, NURBS</td>
<td>109</td>
</tr>
<tr>
<td>3.5</td>
<td>Univariate Interpolation</td>
<td>116</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Lagrange Interpolation</td>
<td>119</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Interpolation by Cubic Segments</td>
<td>122</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Parameterization</td>
<td>134</td>
</tr>
<tr>
<td>3.6</td>
<td>Univariate Approximation</td>
<td>136</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Improving the Quality of Approximation</td>
<td>140</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Approximation with Cubic B-Splines</td>
<td>143</td>
</tr>
<tr>
<td>3.7</td>
<td>Surfaces</td>
<td>144</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Parametric Representation of a Surface</td>
<td>144</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Surface Curves</td>
<td>146</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Derivatives and Tangent Planes</td>
<td>147</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Curvature Theory of Surfaces</td>
<td>152</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Surfaces Represented by Equations</td>
<td>157</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Algebraic Surfaces</td>
<td>158</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Rational Surfaces</td>
<td>159</td>
</tr>
<tr>
<td>3.7.8</td>
<td>Quadrics</td>
<td>160</td>
</tr>
<tr>
<td>3.7.9</td>
<td>Ruled Surfaces</td>
<td>165</td>
</tr>
<tr>
<td>3.7.10</td>
<td>Developable Surfaces</td>
<td>167</td>
</tr>
<tr>
<td>3.7.11</td>
<td>Surfaces of Revolution</td>
<td>170</td>
</tr>
<tr>
<td>3.7.12</td>
<td>Helical Surfaces</td>
<td>173</td>
</tr>
<tr>
<td>3.7.13</td>
<td>Moving a Curve or a Surface in Itself</td>
<td>174</td>
</tr>
<tr>
<td>3.7.14</td>
<td>Intersection of Surfaces</td>
<td>176</td>
</tr>
<tr>
<td>3.8</td>
<td>Tensor Product Surfaces</td>
<td>180</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Bézier Surfaces</td>
<td>182</td>
</tr>
<tr>
<td>3.8.2</td>
<td>B-Spline Surfaces</td>
<td>192</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Rational Tensor Product Surfaces, NURBS Surfaces</td>
<td>198</td>
</tr>
</tbody>
</table>
3.9 Bivariate Interpolation ... 204
3.9.1 Coons Patches .. 204
3.9.2 Interpolation of a Rectangular Point Set 206
3.9.3 Bivariate Lagrange Interpolation 208
3.9.4 Bivariate Hermite Interpolation 210
3.9.5 Bivariate Cubic B-Spline Interpolation 214
3.10 Bivariate Approximation ... 216
3.10.1 A Plane Fitting a Set of Scattered Points 216
3.10.2 A Tensor Product Surface Fitting Scattered
 Data Points ... 220
3.11 Triangular Bézier Patches ... 225
3.12 Tensor Product Volumes .. 232
3.13 Example: Side Window Kinematics 235
3.13.1 The Appropriate Screw Motion to a Given Surface 236
3.13.2 Constructing an Ideal Side Window Surface 237

References .. 238

4 Modeling Techniques in CAD ... 241
4.1 Structures of 3D CAD Models 249
4.1.1 Surface-Based Model Structure 250
4.1.2 Solid-Based Model Structure 252
4.1.3 The Role of CAD Models in Product Development 254
4.2 Wireframe and Surface Design 256
4.2.1 Reference Elements .. 256
4.2.2 Wireframe Design .. 257
4.2.3 Surface Design .. 260
4.2.4 Operations in Wireframe and Surface Design 265
4.2.5 Modeling in Wireframe and Surface Design 270
4.2.6 Surface Analysis Functions 274
4.3 Solid Design .. 276
4.3.1 Modeling of Basis Solids 277
4.3.2 Boolean Operations .. 279
4.3.3 Editing and Detailing Functionalities 281
4.3.4 Feature-Based Geometry Modeling 282
4.4 Combination of Wireframe, Surface,
 and Solid-Based Functions ... 285
4.5 Assembly Design ... 289
4.5.1 Organization of Product Structures 290
4.5.2 Methods of Component Positioning 294
4.5.3 Geometry-Based Interlinks in Assembly Design 301
4.6 Derivation of 2D Drawings .. 305
References .. 308
5 Knowledge-Based Design

5.1 Parameterization as a Basis for Knowledge-Based Design

5.1.1 External Parameter Control

5.1.2 Implementation of Non-CAD Data

5.2 Knowledge Integration Using Template Models

5.2.1 Template-Library-Based Design

5.2.2 Implementation of Mathematical and Logical Relations

5.2.3 Integrated Virtual Product Development Using Centralized Master Models

5.3 Example: Integrated Design in Automotive Bumper System Development

References

6 Engineering Data Management

6.1 The Concept of Engineering Data Management (EDM)

6.1.1 The Y-CIM Model

6.1.2 PLM as a Foundation of EDM

6.1.3 Definition of Engineering Data Management (EDM)

6.2 EDM in Virtual Product Development

6.2.1 Process Orientation in Product Development

6.2.2 EDM as Integrated Management Approach

6.2.3 The Product Development Process

6.2.4 EDM Support in Virtual Product Development

6.2.5 EDM Process Integration

6.3 EDM Database

6.3.1 The Role of Development Data

6.3.2 EDM Documents

6.3.3 CAD Data in EDM

6.3.4 Digital Mock-Up (DMU)

6.3.5 The Virtual Product

6.3.6 Data Security

6.4 Engineering Data Management System (EDMS)

6.4.1 Product Data Management System (PDMS)

6.4.2 Application-Related Functions of EDMS

6.4.3 EDMS Architecture

6.4.4 EDMS Interfaces

6.5 Computer-Supported Engineering in the Context of EDM

6.5.1 How CAx Changes Product Development

6.5.2 CAD Integration

6.5.3 CAD Implementation

6.5.4 Virtual Computer-Generated 3D Product Design Models
6.6 Integrated EDM Applications in Product Development 364
 6.6.1 Functional Dimensioning and Optimization
 in Early Design Phase .. 364
 6.6.2 Consistency of Simulation Data in Optimized
 Design Processes .. 365
 6.6.3 Interdisciplinary Consistency of Simulation Data 366
 6.6.4 Integration of Design and Simulation 367
 6.6.5 CAD/CAE Data Management 368
References .. 369

7 Knowledge Management in Product Development 371
 7.1 Product Knowledge .. 371
 7.1.1 Development of Product Knowledge 371
 7.1.2 Life Cycle of Product Knowledge 373
 7.1.3 Defining Product Knowledge 373
 7.1.4 Product Knowledge Products 374
 7.1.5 Product Knowledge Management 374
 7.2 Fundamentals of Knowledge Management 375
 7.2.1 Knowledge and Knowledge Management 375
 7.2.2 Basic Elements of the Knowledge Base 376
 7.2.3 Knowledge Management in Industrial Management ... 379
 7.2.4 Basic Model of Knowledge Management 380
 7.2.5 System Orientation in Knowledge Management 382
 7.3 Knowledge Transfer in Product Development 383
 7.3.1 Definition of Knowledge Transfer 383
 7.3.2 Transfer and Transformation Processes
 in the Knowledge System 384
 7.3.3 Direct Versus Indirect Knowledge Transfer 385
 7.3.4 Direct Knowledge Transfer 386
 7.3.5 Indirect Knowledge Transfer 386
 7.3.6 The Definition of Knowledge Logistics 388
 7.4 Process Orientation in Knowledge Management 389
 7.4.1 Knowledge-Oriented Process Management 390
 7.4.2 Process-Oriented Knowledge Management 390
 7.4.3 The Knowledge Process in Interaction
 with the Added-Value Processes 391
References .. 392

8 Knowledge-Based Engineering Data Management 393
 8.1 Basic Models and Approaches
 of Knowledge-Oriented EDM 394
 8.1.1 System-Oriented Reference Frame
 of Knowledge-Oriented EDM 394
8.1.2 The Knowledge Process as Connection Between Business Process and Support Process of EDM 394
8.1.3 Integrated Approach to Added-Value Processes 395
8.1.4 Model for the Integration of Knowledge Processes and Data Management 396
8.1.5 From the Knowledge Transfer Model to the Knowledge-Oriented Engineering Data Management 398
8.1.6 Model for the Reconstruction of the Knowledge Base and Database 399
8.2 Requirements for the IT Support of Process-Oriented Knowledge Management in EDM 400
 8.2.1 Modeling Approach for the Technical Subsystem 401
 8.2.2 The Database of Knowledge-Oriented EDM 403
 8.2.3 EDM Workflow Support of Knowledge-Intensive Processes 403
 8.2.4 Management, Transfer and Steering of Knowledge-Oriented EDM 404
8.3 Knowledgeware in Product Development 404
 8.3.1 The Parametric-Associative Approach 405
 8.3.2 The Fundamentals of Parametric-Associative Design 406
 8.3.3 Knowledge Management and Product Configuration 407
References 408

9 Advanced Applications of CAD/EDM in the Automotive Industry 409
 9.1 Applications for Knowledge-Based EDM 409
 9.1.1 Relevant Knowledge Operations in EDM 410
 9.1.2 Factors that Influence Knowledge Transfer Via Data Transfer at the Operational Level 410
 9.1.3 Data Management Barriers in Indirect Knowledge Transfer 412
 9.1.4 Reference Process for the Knowledge-Oriented Development of EDM Use Cases 413
 9.2 Integrated CAD Data Management in Automotive Engineering 414
 9.2.1 Challenges Related to the Topic 415
 9.2.2 Concept of Integrated CAD Data Management 415
 9.2.3 CAD Scheduling 416
 9.2.4 A Concept of Geometry Reference 418
 9.2.5 CAD Data Quality, Progress and Maturity 419
9.2.6 Generic EDM Workflow for CAD
 Data Management .. 421
9.2.7 Data Monitoring 422
9.3 A Parametric-Associative Concept Model
 for Initial Vehicle Development 422
 9.3.1 Requirements for Automotive Concept Phases 423
 9.3.2 Integrated Approach to Virtual Concept
 Development ... 428
 9.3.3 Data Pool Structure and Parameterization Strategy.. 434
 9.3.4 Geometry Creation in Conceptual Vehicle
 Development ... 437
 9.3.5 Processes and Applications in the Project Flow 446
 9.3.6 Product Knowledge in Integrated
 Virtual Concept Development 450
 9.3.7 Integration of the Virtual Concept Vehicle
 into the Knowledge-Based EDM 452
9.4 Analysis and Design Process of the Operating EDM 454
 9.4.1 Integrated Consideration of Design Measures 455
References .. 455

Curriculum Vitae of the Authors 457

Index .. 459
Integrated Computer-Aided Design in Automotive Development Processes, Geometric Fundamentals, Methods of CAD, Knowledge-Based Engineering Data Management
Hirz, M.; Dietrich, W.; Gfrerrer, A.; Lang, J.
2013, XIX, 466 p., Hardcover
ISBN: 978-3-642-11939-2