Contents

Part I Operating System and Software for Large Scale Systems

Light-Weight Kernel with Portals ... 3
Erich Focht, Jaka Močnik, Fredrik Unger, Andreas Jeutter, Marko Novak
1 Introduction ... 3
2 Kitten ... 5
 2.1 OFED ... 6
 2.2 Benchmarks ... 7
3 Portals .. 7
 3.1 Portals: A Brief Introduction 8
 3.2 Optimizing Portals for LWK 9
 3.3 A High-Performance Infiniband NAL 10
 3.4 Benchmarks ... 11
4 MPI .. 12
 4.1 ORTE Job Preparation and Startup 12
 4.2 Job Start on the Light-Weight Kernel 14
 4.3 Architecture of OOB/Portals 15
5 Conclusion and Future Work ... 15
References ... 16

Towards an Architecture for Management of Very Large Computing Systems ... 17
Jochen Buchholz, Eugen Volk
1 Introduction ... 17
 1.1 Specific Challenges in HPC 18
2 Challenges ... 20
 2.1 Jitter ... 21
 2.2 Scalability ... 22
 2.3 Data Correlation ... 23
 2.4 Error Handling ... 23

vii
Empirical Optimization of Collective Communications with ADCL
Katharina Benkert, Edgar Gabriel

1 Introduction and Motivation .. 37
2 The Abstract Data and Communication Library (ADCL) 38
3 Semantics of the New ADCL Interfaces 40
 3.1 The Vector-Map Object .. 40
 3.2 Extension of the ADCL Interfaces 42
 3.3 The New Function Sets .. 43
4 Performance Evaluation .. 44
 4.1 Integration of ADCL .. 44
 4.2 Setup .. 46
 4.3 Results .. 46
5 Summary and Outlook ... 48
References .. 49

Part II I/O Strategies

I/O Forwarding on NEC SX-9 ... 53
Erich Focht, Thomas Großmann, Danny Sternkopf
1 IOFWD Implementation ... 53
 1.1 Design of IOFWD ... 54
 1.2 IOFWD Components ... 55
 1.3 Implementation Status 56
 1.4 Performance Results 57
2 IOFWD Usage ... 57
 2.1 System Overview at HLRS 58
 2.2 Application Workflow Example 59
High-Speed Data Transmission Technology for the NEC SX-9

Hiroshi Yamaguchi, Hiroshi Takahara

1. Introduction ... 63
2. LSI Technology .. 65
 2.1 Serial Interface .. 65
 2.2 Clocks .. 65
3. High-Speed Circuit Technology 66
 3.1 Transmission Technology .. 67
 3.2 Power Noise Countermeasures 69
4. Summary .. 71
References ... 71

Part III Grid and Cloud Computing

The Vector Computing Cloud: Toward a Vector Meta-Computing Environment

Rye’s Egawa, Manabu Higashida, Yoshitomo Murata, Hiroaki Kobayashi

1. Introduction .. 76
2. Basic Concept of the Vector Computing Clouds 77
3. Prototyping of the Vector Computing Cloud 78
 3.1 Virtualizing Vector Supercomputers: GRID VM for SX .. 79
 3.2 Job Scheduling on the Vector Computing Cloud .. 80
 3.3 MPI Environment for Vector Computing Cloud .. 83
4. Feasibility Study and Early Performance Evaluations 83
 4.1 Performance Evaluation of the Job Scheduling Mechanism ... 84
 4.2 System Tests .. 85
 4.3 Performance of HPL .. 88
5. Conclusions .. 90
References ... 90

Full-Scale 3D Vibration Simulator of an Entire Nuclear Power Plant on Simple Orchestration Application Framework

Guehee Kim, Kohei Nakajima, Takayuki Tatekawa, Naoya Teshima, Yoshio Suzuki, Hiroshi Takemiya

1. Introduction .. 94
2. Full-Scale 3D Vibration Simulator for an Entire Nuclear Power Plant .. 96
 2.1 GDS Application of Full-Scale 3D Vibration Simulator ... 96
 2.2 Needs of Pipelined Data-Transfer Scenario ... 97
Development of Simple Orchestration Application Framework and Its Application to Burning Plasma Simulation
Takayuki Tatekawa, Kohei Nakajima, Guehee Kim, Naoya Teshima, Yoshio Suzuki, Hiroshi Takemiya

1 Introduction .. 107
2 Simple Orchestration Application Framework (SOAF) 109
 2.1 Overview of SOAF 109
 2.2 Controller ... 110
 2.3 Sentinel .. 111
 2.4 Configuration File 112
3 Development of Simple Orchestration Application Framework 113
 3.1 Burning Plasma Simulation 114
 3.2 Experiment ... 116
4 Summaries ... 119
References .. 120

Part IV Acoustics and Structural Mechanic

On Sound Generated by a Globally Unstable Round Jet
G. Geiser, H. Foysi, W. Schröder, M. Meinke

1 Introduction ... 123
2 Numerical Setup .. 124
 2.1 Round Jet Flow Simulation 124
 2.2 Aeroacoustic Computation 126
 2.3 Parallelization of the Acoustic Solver 128
3 Results .. 130
 3.1 Jet Characteristics 130
 3.2 Acoustic Results .. 132
4 Conclusion .. 134
References .. 134

Numerical Simulation of Sibilant [s] Using the Real Geometry of a Human Vocal Tract
Kazunori Nozaki

1 Introduction ... 137
 1.1 Signal Processing for Consonants 138
 1.2 Sound Induced Flow 138
 1.3 Sibilant [s] in Dental Treatments 138

Ralf Schneider

Part V Computational Fluid Dynamics

Downscaling Climate Simulations for Use in Hydrological Modeling of Medium-Sized River Catchments

DNS of Rising Bubbles Using VOF and Balanced Force Surface Tension

Hendrik Weking, Jan Schlottke, Markus Boger, Philipp Rauschenberger, Bernhard Weigand, Claus-Dieter Munz
Contents

2.3 Moving Frame of Reference ... 174

3 Surface Tension ... 175

3.1 The Continuum Surface Force (CSF) Model 175

3.2 Balanced-Force Algorithm .. 176

3.3 Curvature Estimation .. 177

4 Numerical Setup ... 178

5 Results: Rise Behavior of Bubbles 179

5.1 Reduction of Spurious Currents 179

5.2 Terminal Rise Velocity ... 182

5.3 Bubble Shape ... 182

6 Conclusion ... 183

References .. 184

Large-Eddy Simulation of Double-Row Compound-Angle Film-Cooling: Computational Aspects ... 185

Lars Gräf, Leonhard Kleiser

1 Introduction ... 185

2 Simulation Methods ... 187

2.1 Code and Governing Equations 187

2.2 Integration and Flux Evaluation 188

2.3 Turbulence Modeling .. 188

2.4 Boundary Treatment .. 189

2.5 Computational Environment and Measuring Procedure 189

3 Performance Results and Flow Field Visualization 190

3.1 Sequential Performance of Individual Code Components ... 190

3.2 Overall Parallel Performance 191

3.3 Flow Field Visualization ... 194

4 Conclusions ... 194

References .. 195

Large Eddy Simulation of Wind Turbulence for Appropriate Urban Environment ... 197

Tetsuro Tamura
High Performance Computing on Vector Systems 2010
Resch, M.M.; Benkert, K.; Wang, X.; Galle, M.; Bez, W.; Kobayashi, H.; Roller, S. (Eds.)
2010, XII, 198 p., Hardcover
ISBN: 978-3-642-11850-0