Chapter 2
Prerequisites and Complements
in Commutative Algebra

2.1 Finite Ring Extensions

Proposition 2.1. Let A be a subring of a ring B, and let $x \in B$. The following assertions are equivalent:

(i) The element x is integral over A, i.e., there exists a monic polynomial $P(t) = t^n + a_1 t^{n-1} + \cdots + a_{n-1} t + a_n \in A[t]$ such that $P(x) = 0$.

(ii) The subring $A[x]$ of B generated by A and x is a finitely generated A–module.

(iii) There exists a subring A' of B, containing $A[x]$, which is a finitely generated A–module.

The proof is classical and is left to the reader.

2.1.1 Properties and Definitions

I1. If A is a subring of B, the set of elements of B which are integral over A is a subring of B, called the integral closure of A in B.

For S a multiplicatively stable subset of A, if \overline{A} denotes the integral closure of A in B, then $S^{-1}\overline{A}$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.

I2. One says that B is integral over A if it is equal to the integral closure of A.

I3. One says that B is finite over A (or that B/A is finite) if B is a finitely generated A–module.

The following assertions are equivalent:

(i) The extension B/A is finite.

(ii) B is a finitely generated A–algebra and is integral over A.

(iii) B is generated as an A–algebra by a finite number of elements which are integral over A.

I4. An integral domain A is said to be integrally closed if it is integrally closed in its field of fractions.
Example 2.2.

- A unique factorisation domain, a Dedekind domain are integrally closed.
- The polynomial ring \(A[t_1, t_2, \ldots, t_r] \) is integrally closed if and only if \(A \) is integrally closed (see for example [Bou2], chap.5, §1, no3).

15. If \(B \) is integral over \(A \), then \(B \) is a field if and only if \(A \) is a field.

2.1.2 Spectra and Finite Extensions

In all the sequel, we suppose \(B/A \) finite.

Proposition 2.3 (Cohen–Seidenberg Theorem). The map \(\text{Spec}(B) \to \text{Spec}(A) \) is surjective: for each \(p \in \text{Spec}(A) \), there exists \(q \in \text{Spec}(B) \) such that \(q \cap A = p \) (we then say that \(q \) “lies above \(p \”)]. Moreover,

1. If both \(q_1 \) and \(q_2 \) lie above \(p \), then \(q_1 \subset q_2 \) implies \(q_1 = q_2 \).
2. If \(p_1, p \in \text{Spec}(A) \) with \(p_1 \subset p \), and if \(q_1 \in \text{Spec}(B) \) lies above \(p_1 \), then there exists \(q \in \text{Spec}(B) \) which lies above \(p \) and such that \(q_1 \subset q \).
3. For each \(p \in \text{Spec}(A) \), there is only a finite number of prime ideals of \(B \) which lie above \(p \).

Proof (of 2.3). We localize at \(p \): the extension \(B_p/A_p \) is finite, and the prime ideals of \(B \) which lie above \(p \) correspond to the prime ideals of \(B_p \) which lie above \(pA_p \). Since \(pA_p \) is maximal in \(A_p \), the proposition thus follows from the following lemma.

Proposition 2.4. Suppose that \(B/A \) is finite.

1. The map \(\text{Spec}(B) \to \text{Spec}(A) \) induces a surjective map

 \[
 \text{MaxSpec}(B) \to \text{MaxSpec}(A).
 \]

2. Any prime ideal of \(B \) which lies above a maximal ideal of \(A \) is also maximal.

Proof (of 2.4). To prove that \(n \) is a maximal ideal of \(B \) if and only if \(n \cap A \) is a maximal ideal of \(A \), we divide by \(n \), and we now have to prove that, if \(B \) is integral over \(A \), with \(B \) an integral domain, then \(B \) is a field if and only if \(A \) is a field (see I5 above).

To prove the surjectivity of the map \(\text{MaxSpec}(B) \to \text{MaxSpec}(A) \), it suffices to prove that, for \(m \in \text{MaxSpec}(A) \), we have \(mB \neq B \). Now if \(mB = B \), then there exists \(a \in m \) such that \((1-a)B = 0\) (it is left to the reader to prove that), whence \(1 - a = 0 \) and \(1 \in m \).
2.1 Finite Ring Extensions

2.1.3 Case of Integrally Closed Rings

Proposition 2.5. Let A and B be integrally closed rings with field of fractions K and L respectively. Suppose B is a finite extension of A. Suppose the extension L/K is normal, and let $G := \text{Aut}_K(L)$ be the Galois group of this extension. Then, for each $p \in \text{Spec}(A)$, the group G acts transitively on the set of $q \in \text{Spec}(B)$ which lie above p.

Proof (of 2.5). We first suppose that the extension L/K is separable, and thus is a Galois extension. Then we have $K = L^G$, so that $A = B^G$ (indeed, every element of B^G is integral over A and thus belongs to K, whence to A since A is integrally closed). Let q and q' be two prime ideals of B which lie above p. Suppose that q' is not contained in any of the $g(q)$'s ($g \in G$), and there exists $x \in q'$ which doesn’t belong to any of the $g(q)$'s ($g \in G$). But then $\prod_{g \in G} g(x)$ is an element of $A \cap q'$ which doesn’t belong to $A \cap q$, which is a contradiction.

We now deal with the general case. Let p be the characteristic of K. Let $K' := L^G$. Then L/K' is a Galois extension with Galois group G, and the extension K'/K is purely inseparable, i.e., for each $x \in K'$, there exists an integer n such that $x^{p^n} \in K$. Let A' be the integral closure of A in K'. Then there is a unique prime ideal of A' which lies above p, namely $p' := \{x \in A' \mid (\exists n \in \mathbb{N})(x^{p^n} \in p)\}$. Proposition 2.5 thus follows from the above case $K' = K$.

Proposition 2.6. Let A be an integrally closed ring and let K be its field of fractions. Let B be an A–algebra which is finite over A. Suppose B is an integral domain and let L be its field of fractions. Let $p, p_1 \in \text{Spec}(A)$ be such that $p \subset p_1$, and let $q_1 \in \text{Spec}(B)$ lie above p_1. Then there exists $q \in \text{Spec}(B)$ which lies above p and such that $q \subset q_1$.

Proof (of 2.6). Let M be a finite normal extension of K containing L and let C be the normal closure of A in M. By 2.3, we know that there exist prime ideals r_1 and r of C which lie above q_1 and p respectively. Since r_1 lies above p_1, we also know that there exists $r_1' \in \text{Spec}(C)$ which lies above p_1, and such that $r \subset r_1'$. By 2.5, there exists $g \in \text{Gal}(M/K)$ such that $r_1 = g(r_1')$. We then set $q := g(r) \cap B$.

2.1.4 Krull Dimension: First Definitions

Let A be a ring. A chain of length n of prime ideals of A is a strictly increasing sequence

$$P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n$$

of prime ideals of A.
If the set of lengths of chains of prime ideals of A is bounded, then the greatest of these lengths is called the Krull dimension of A, and written $\text{Krdim}(A)$. Otherwise, A is said to have infinite Krull dimension. The Krull dimension of the ring 0 is, by definition, $-\infty$.

If M is an A–module, then we call the Krull dimension of M and write $\text{Krdim}_A(M)$ the Krull dimension of the ring $A/\text{Ann}_A(M)$. Note that $\text{Krdim}_A(M) \leq \text{Krdim}(A)$.

For $p \in \text{Spec}(A)$, we call the height of p and write $\text{ht}(p)$ the Krull dimension of the ring A_p. Thus $\text{ht}(p)$ is the maximal length of chains of prime ideals of A whose greatest element is p. The height of p is also sometimes called the codimension of p.

Some properties.

- $\text{Krdim}(A) = \sup \{ \text{ht}(m) \} \in \text{MaxSpec}(A),$
- $\text{Krdim}(A/\text{Nilrad}(A)) = \text{Krdim}(A),$
- If B is an A–algebra which is finite over A, then $\text{Krdim}(B) = \text{Krdim}(A)$.

Lemma 2.7. Let k be a field. The Krull dimension of the algebra of polynomials in r indeterminates $k[t_1, t_2, \ldots, t_r]$ over k is r.

Proof (of 2.7). We first note that there exists a chain of prime ideals of length r, namely the sequence $0 \subset (t_1) \subset (t_1, t_2) \subset \cdots \subset (t_1, t_1, \ldots, t_r)$. It is therefore sufficient to prove that the Krull dimension of $k[t_1, t_2, \ldots, t_r]$ is at most r.

If K/k is a field extension, then we denote by $\text{trdeg}_k(K)$ its transcendence degree.

Proposition 2.8. Let A and B be two integral domains which are finitely generated k–algebras, with field of fractions K and L respectively. Suppose there exists a surjective k–algebra homomorphism $f : A \rightarrow B$.

1. We have $\text{trdeg}_k(L) \leq \text{trdeg}_k(K)$.
2. If $\text{trdeg}_k(L) = \text{trdeg}_k(K)$, then f is an isomorphism.

Proof (of 2.8).

(1) Any generating system for A as k–algebra is also a generating system for K over k. Thus K has a finite transcendence degree over k, and, if this degree is n and if $n \neq 0$, then there exists a system of n algebraically independent elements in A which is a basis of transcendence for K over k. The same conclusion applies to B and L. Now, by inverse image by f, any k–algebraically independent system of elements of B can be lifted to a system of k–algebraically independent elements of A. This proves the first assertion.

(2) Suppose that $\text{trdeg}_k(L) = \text{trdeg}_k(K)$.

If $\text{trdeg}_k(L) = \text{trdeg}_k(K) = 0$, then K and L are algebraic extensions of k, and, for each $a \in K$, a and $f(a)$ have the same minimal polynomial over k. This proves that the kernel of f is just 0.
Suppose now that \(\text{trdeg}_k(L) = \text{trdeg}_k(K) = n > 0\). We know (cf. proof of (1) above) that there exists a basis of transcendance \((a_1, a_2, \ldots, a_n)\) for \(K\) over \(k\) which consists of elements of \(A\), and such that \((f(a_1), f(a_2), \ldots, f(a_n))\) is a basis of transcendance for \(L\) over \(k\). In particular, we see that the restriction of \(f\) to \(k[a_1, a_2, \ldots, a_n]\) is an isomorphism onto \(k[f(a_1), f(a_2), \ldots, f(a_n)]\), and induces an isomorphism

\[
k(a_1, a_2, \ldots, a_n) \cong k(f(a_1), f(a_2), \ldots, f(a_n)).
\]

If \(a \in A\) has minimal polynomial \(P(t)\) over \(k(a_1, a_2, \ldots, a_n)\), then \(f(a)\) has minimal polynomial \(f(P(t))\) over \(k(f(a_1), f(a_2), \ldots, f(a_n))\), which proves that \(f\) is injective, whence is an isomorphism.

Let then \(p_0 \subset p_1 \subset \cdots \subset p_n\) be a chain of prime ideals of \(k[t_1, t_2, \ldots, t_r]\). Applying the above lemma to the sequence of algebras \(k[t_1, t_2, \ldots, t_r]/p_j\), we see that, for each \(j\) \((0 \leq j \leq n)\), writing \(K_j\) for the field of fractions of \(k[t_1, t_2, \ldots, t_r]/p_j\), we have \(\text{trdeg}_k K_j \leq \text{trdeg}_k K_0 - j \leq r - j\). It follows in particular that \(n \leq r\).

Corollary 2.9. Let \(A\) be an integral domain which is a finitely generated algebra over a field \(k\). Let \(K\) be its field of fractions. Then

\[
\text{Krdim}(A) = \text{trdeg}_k(K).
\]

Proposition 2.10. Let \(A = k[x_1, x_2, \ldots, x_r]\) be a finitely generated algebra over a field \(k\), generated by \(r\) elements \(x_1, x_2, \ldots, x_r\). We have \(\text{Krdim}(A) \leq r\), and \(\text{Krdim}(A) = r\) if and only if \(x_1, x_2, \ldots, x_r\) are algebraically independent.

Proof (of 2.10). Consider \(r\) indeterminates \(t_1, t_2, \ldots, t_r\). Let \(\mathfrak{A}\) be the kernel of the homomorphism from the polynomial algebra \(k[t_1, t_2, \ldots, t_r]\) to \(A\) such that \(t_j \mapsto x_j\). The algebra \(A\) is isomorphic to \(k[t_1, t_2, \ldots, t_r]/\mathfrak{A}\). We thus see that \(\text{Krdim}(A) \leq r\). Moreover, if \(\text{Krdim}(A) = r\), then we see that

\[
\text{Krdim}(k[t_1, t_2, \ldots, t_r]) = \text{Krdim}(k[t_1, t_2, \ldots, t_r]/\mathfrak{A}),
\]

whence \(\mathfrak{A} = 0\) since 0 is a prime ideal of \(k[t_1, t_2, \ldots, t_r]\).

2.2 Jacobson Rings and Hilbert’s Nullstellensatz

2.2.1 On Maximal Ideal of Polynomial Algebras

Let \(A\) be a commutative ring (with unity), and let \(A[X]\) be a polynomial algebra over \(A\).
Whenever \(\mathfrak{A} \) is an ideal of \(A[X] \), let us denote by \(\overline{\mathfrak{A}} \) and \(x \) respectively the images of \(A \) and \(x \) through the natural epimorphism \(A[X] \to A[X] / \mathfrak{A} \). Thus we have

\[
\overline{\mathfrak{A}} = A / \mathfrak{A} \cap \overline{\mathfrak{A}} \quad \text{and} \quad A[X] = \overline{\mathfrak{A}}[x].
\]

Note that if \(\mathfrak{P} \) is a prime ideal of \(A[X] \), then \(\mathfrak{P} \cap A \) is a prime ideal of \(A \). We shall be concerned by the case of maximal ideals.

Let us point out two very different behaviour of maximal ideals of \(A[X] \) with respect to \(A \).

- If \(\mathfrak{M} \) is a maximal ideal of \(\mathbb{Z}[X] \), then \(\mathfrak{M} \cap \mathbb{Z} \neq \{0\} \) (this will be proved below; see 2.11, (3)).

As a consequence, a maximal ideal \(\mathfrak{M} \) of \(\mathbb{Z}[X] \) can be described as follows: there is a prime number \(p \) and a polynomial \(P(X) \in \mathbb{Z}[X] \) which becomes irreducible in \((\mathbb{Z}/p\mathbb{Z})[X] \) such that \(\mathfrak{M} = p\mathbb{Z}[X] + P(X)\mathbb{Z}[X] \).

Thus the quotients of \(\mathbb{Z}[X] \) by maximal ideals are the finite fields.

- Let \(p \) be a prime number, and let \(\mathbb{Z}_p := \{a/b \in \mathbb{Q} \mid p \nmid b\} \). Then \(\mathbb{Z}_p[1/p] = \mathbb{Q} \), which shows that \(\mathfrak{M} := (1-pX)\mathbb{Z}_p[X] \) is a maximal ideal of \(\mathbb{Z}_p[X] \). Notice that here \(\mathfrak{M} \cap \mathbb{Z}_p = \{0\} \).

Let us try to examine these questions through the following proposition.

Proposition 2.11.

1. If there is \(\mathfrak{M} \in \text{Spec}^{\max}(A[X]) \) such that \(\mathfrak{M} \cap A = \{0\} \), then there exists \(a \in A^* := A - \{0\} \) such that \((1-aX)A[X] \in \text{Spec}^{\max}(A[X]) \).

 In other words: if there exists \(x \) in an extension of \(A[x] \) such that \(A[x] \) is a field, then there is \(a \in A^* \) such that \(A[1/a] \) is a field.

2. Let \(\text{Spec}^*(A) \) be the set of all nonzero prime ideals of \(A \). We have

\[
\bigcap_{p \in \text{Spec}^*(A)} \mathfrak{p} = \{0\} \cup \{a \in A^* \mid A[1/a] \text{ is a field}\}.
\]

3. Assume \(\bigcap_{p \in \text{Spec}^*(A)} \mathfrak{p} = \{0\} \). Then for all \(\mathfrak{M} \in \text{Spec}^{\max}(A[X]) \) we have \(\mathfrak{M} \cap A \neq \{0\} \).

 In other words: there is no \(x \) such that \(A[x] \) is a field.

Proof (of 2.11).

(1) Assume that \(A[x] \) is a field. Then \(A \) is an integral domain, and if \(F \) denotes its field of fractions, we have \(A[x] = F[x] \). Since \(F[x] \) is a field, \(x \) is algebraic over \(F \), hence a root of a polynomial with coefficients in \(A \). If \(a \) is the coefficient of the highest degree term of that polynomial, \(x \) is integral over \(A[1/a] \). Whence \(A[x] \) is integral over \(A[1/a] \), and since \(A[x] \) is a field, it follows that \(A[1/a] \) is a field.

(2) Assume first that \(a \in \bigcap_{p \in \text{Spec}^*(A)} \mathfrak{p} \) and \(a \neq 0 \). We must show that \(A[1/a] \) is a field.

 There is a maximal ideal \(\mathfrak{M} \) of \(A[X] \) containing \((1-aX)A[X] \).
2.2 Jacobson Rings and Hilbert’s Nullstellensatz

- We then have $\mathfrak{M} \cap A = \{0\}$. Indeed, if it were not the case, we would have $\mathfrak{M} \cap A \in \text{Spec}^*(A)$, hence $a \in \mathfrak{M} \cap A$, then $a \in \mathfrak{M}$, $aX \in \mathfrak{M}$, so 1 $\in \mathfrak{M}$.

- Let x be the image of X in $A[X]/\mathfrak{M}$. Thus $A[x]$ is a field. But $1 - ax = 0$, proving that $x = 1/a$ and $A[1/a]$ is a field.

Assume now that $A[1/a]$ is a field, hence $(1 - aX)A[X] \in \text{Spec}^{\max}(A[X])$. Let $p \in \text{Spec}^*(A)$. Then $p \nsubseteq (1 - aX)A[X]$, since $(1 - aX)A[X] \cap A = \{0\}$.

It follows that $pA[X] + (1 - aX)A[X] = A$. Interpreted in the polynomial ring $(A/p)[X]$, that equality shows that the polynomial $1 - \overline{a}X$ is invertible, which implies that $\overline{1} = 0$, i.e., $a \in \mathfrak{p}$.

(3) Assume that $A[x]$ is a field. By (1), there is $a \in A^*$ such that $A[1/a]$ is a field. By (2), we know that $a \in \bigcap_{p \in \text{Spec}^*(A)} p$, a contradiction.

Remark 2.12. The assertion (3) of the preceding proposition shows in particular that if A is a principal ideal domain with infinitely many prime ideals (like \mathbb{Z} or $k[X]$ for example), then whenever $\mathfrak{M} \in \text{Spec}^{\max}(A[X])$, we have $\mathfrak{M} \cap A \neq \{0\}$, hence $\mathfrak{M} \cap A \in \text{Spec}^{\max}(A)$.

Theorem–Definition 2.13 The following assertions are equivalent:

(J1) Whenever $p \in \text{Spec}(A)$, we have

$$p = \bigcap_{m \in \text{Spec}^{\max}(A), \ m \subseteq p} m.$$

(J2) Whenever $\mathfrak{M} \in \text{Spec}^{\max}(A[X])$, we have $\mathfrak{M} \cap A \in \text{Spec}^{\max}(A)$.

A ring which fulfills the preceding conditions is called a Jacobson ring.

Proof (of 2.13). Let us first notice that both properties (J1) and (J2) transfer to quotients: if A satisfies (J1) (respectively (J2)), and if a is an ideal of A, then A/a satisfies (J1) (respectively (J2)) as well.

Let us show (J1) \implies (J2). Let $\mathfrak{M} \in \text{Spec}^{\max}(A[X])$. We set $A[X]/\mathfrak{M} = (A/\mathfrak{M} \cap A)[X]$.

We have $\mathfrak{M} \cap A \in \text{Spec}(A)$, hence $\mathfrak{M} \cap A$ is an intersection of maximal ideals of A. If $\mathfrak{M} \cap A$ is not maximal, it is an intersection of maximal ideals in which it is properly contained, thus in the ring $A/\mathfrak{M} \cap A$, we have

$$\bigcap_{p \in \text{Spec}^*(A/\mathfrak{M} \cap A)} p = \{0\},$$

which shows (by 2.11, (3)) that $(A/\mathfrak{M} \cap A)[X]$ cannot be a field, a contradiction.

Let us show (J2) \implies (J1). Let $p \in \text{Spec}(A)$. Working in A/p, we see that it suffices to prove that if A is an integral domain which satisfies (J2), then the intersection of maximal ideals is $\{0\}$.

Let $a \in \bigcap_{m \in \text{Spec}^{\max}(A)} m$. Thus whenever $\mathfrak{M} \in \text{Spec}^{\max}(A[X])$, we have $a \in \mathfrak{M}$, hence $aX \in \mathfrak{M}$, which proves that $1 - aX$ is invertible, hence $a = 0$.

Let us emphasize the defining property of Jacobson rings, by stating the following proposition (which is nothing but a reformulation of property (J2)).

Proposition 2.14. The following two assertions are equivalent:

(i) A is a Jacobson ring.

(ii) If $\overline{A}[x]$ is a quotient of $A[X]$ which is a field, then \overline{A} is a field and x is algebraic over \overline{A}.

Remark 2.15. Let us immediately quote some examples and counterexamples of Jacobson rings:

- Examples of Jacobson rings: fields, principal ideal domains with infinitely many prime ideals, quotients of Jacobson rings.
- Non Jacobson rings: discrete valuation rings.

The next theorem enlarges the set of examples of Jacobson ring to all the finitely generated algebras over a Jacobson ring.

Theorem 2.16. Let A be a Jacobson ring.

1. $A[X]$ is a Jacobson ring.
2. If B is a finitely generated A–algebra, then B is a Jacobson ring.

Lemma 2.17.

1. Let A be a Jacobson ring. Assume that $\overline{A}[v_1, v_2, \ldots, v_r]$ is a finitely generated A–algebra which is a field. Then \overline{A} is a field, and $\overline{A}[v_1, v_2, \ldots, v_r]$ is an algebraic (hence finite) extension of \overline{A}.

2. Let k be a field. If $k[v_1, v_2, \ldots, v_r]$ is a finitely generated k–algebra which is a field, then it is an algebraic (hence finite) extension of k.

3. Let k be an algebraically closed field. If $k[v_1, v_2, \ldots, v_r]$ is a finitely generated k–algebra which is a field, then it coincides with k.

Assertion (3) of the preceding corollary may be reformulated as Hilbert’s Nullstellensatz.

Theorem 2.18 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. The map

$$k^{r} \to \text{Spec}^{\text{max}}(k[v_1, v_2, \ldots, v_r])$$

$$(\lambda_1, \lambda_2, \ldots, \lambda_r) \mapsto \langle v_1 - \lambda_1, v_2 - \lambda_2, \ldots, v_r - \lambda_r \rangle$$

is a bijection.

Proof (of 2.16). Let us prove (1).

Let \mathfrak{M} be a maximal ideal of $A[X, Y]$. We set

$$\overline{A} := A/\mathfrak{M} \cap A,$$

$$\overline{A}[x] := A[X]/\mathfrak{M} \cap A[X] \text{ and } \overline{A}[y] := A[Y]/\mathfrak{M} \cap A[Y],$$

$$\overline{A}[x, y] := A[X, Y]/\mathfrak{M}.$$

We have to prove that $\overline{A}[x]$ is a field.
Since \(\mathbb{A}[x, y] \) is a field, \(\mathbb{A} \) is an integral domain, and if \(k \) denotes its field of fractions, we have \(\mathbb{A}[x, y] = k[x, y] \).

Since \(k[x, y] = k[x][y] \) is a field, \(x \) is not transcendental (by 2.11, (3)) over \(k \), hence \(k[x] \) is a field. As in the proof of 2.11, (1), we see that there exists \(a \in A^* \) such that \(x \) is integral over \(A[1/a] \).

Similarly, there exists \(b \in A^* \) such that \(y \) is integral over \(A[1/b] \). It follows that \(A[x, y] \) is integral over \(A[1/ab] \). Since \(A[x, y] \) is a field, it implies that \(A[1/ab] \) is a field.

Now since \(A \) is a Jacobson ring, it follows from Proposition 3 that \(\mathbb{A} \) is a field, i.e., \(\mathbb{A} = k \). We have already seen that \(k[x] \) is a field, proving that \(\mathbb{A}[x] \) is a field.

Let us prove (2).

By induction on \(r \), it follows from (1) that, for all \(r \), \(A[v_1, v_2, \ldots, v_r] \) is a Jacobson ring. So are the quotients of these algebras, which are the finitely generated \(A \)-algebras.

Proof (of 2.17).

(1) Assume that \(\mathbb{A}[v_1, v_2, \ldots, v_r] \) is a field. Since \(\mathbb{A}[v_1, v_2, \ldots, v_{r-1}] \) is a Jacobson ring (by theorem 4, (2)), it follows from Proposition 3 that \(\mathbb{A}[v_1, v_2, \ldots, v_{r-1}] \) is a field over which \(v_r \) is algebraic. Repeating the argument leads to the required statement.

(2) and (3) are immediate consequences of (1).

2.2.2 Radicals and Jacobson Rings, Application to Algebraic Varieties

Theorem–Definition 2.19

1. The Jacobson radical of a ring \(A \) is the ideal

 \[
 \text{Rad}(A) := \bigcap_{m \in \text{Spec}^\text{max}(A)} m.
 \]

 The Jacobson radical coincides with the set of elements \(a \in A \) such that, for all \(x \in A \), \((1 - ax) \) is invertible.

2. The nilradical of a ring \(A \) is the ideal

 \[
 \text{Nilrad}(A) := \bigcap_{p \in \text{Spec}(A)} p.
 \]

 The nilradical coincides with the set of nilpotent elements of \(A \).

Proof (of 2.19). We prove only (2). It is clear that any nilpotent element of \(A \) belongs to \(\text{Nilrad}(A) \). Let us prove the converse.

Whenever \(\mathfrak{M} \) is a maximal ideal of \(A[X] \), we know that \(\mathfrak{M} \cap A \) is a prime ideal of \(A \). It implies that \(\text{Nilrad}(A) \subset \text{Rad}(A) \), and thus for \(a \in \text{Nilrad}(A) \), the polynomial \((1 - aX) \) is invertible, which implies that \(a \) is nilpotent.
Now if A is a Jacobson ring, it follows from 2.13 that
\[\text{Rad}(A) = \text{Nilrad}(A). \]
Applying that remark to a quotient A/\mathfrak{a} of a Jacobson ring, we get the following proposition.

Lemma 2.20. Let A be a Jacobson ring, and let \mathfrak{a} be an ideal of A. We have
\[\bigcap_{\mathfrak{m} \in \text{Spec}_{\text{max}}(A)} \mathfrak{a} \subseteq \mathfrak{m} = \{ a \in A \mid (\exists n \geq 0)(a^n \in \mathfrak{a}) \}. \]

Applying the preceding proposition to the case where $A = k[X_1, \ldots, X_r]$ for k algebraically closed gives the “strong form” of Hilbert’s Nullstellensatz.

Corollary 2.21 (Strong Nullstellensatz). Let k be an algebraically closed field. For A an ideal of $k[X_1, X_2, \ldots, X_r]$, let us set
\[V(\mathfrak{a}) := \{ (\lambda_1, \lambda_2, \ldots, \lambda_r) \in k^r \mid (\forall P \in \mathfrak{a})(P(\lambda_1, \lambda_2, \ldots, \lambda_r) = 0) \}. \]

If $Q \in k[X_1, X_2, \ldots, X_r]$ is such that
\[(\forall (\lambda_1, \lambda_2, \ldots, \lambda_r) \in V(\mathfrak{a}))(Q(\lambda_1, \lambda_2, \ldots, \lambda_r)) = 0, \]
then there exists $n \geq 0$ such that $Q^n \in \mathfrak{a}$.

Proof (of 2.21). Translating via the dictionary $k^r \longleftrightarrow \text{Spec}^{\text{max}}(k[X_1, X_2, \ldots, X_r])$, we see that
\[V(\mathfrak{a}) \longleftrightarrow \{ \mathfrak{m} \in \text{Spec}^{\text{max}}(k[X_1, X_2, \ldots, X_r]) \mid \mathfrak{a} \subseteq \mathfrak{m} \}, \]
while the hypothesis on Q translates to
\[Q \in \bigcap_{\mathfrak{m} \in \text{Spec}_{\text{max}}(k[X_1, X_2, \ldots, X_r])} \mathfrak{m}. \]

2.3 Graded Algebras and Modules

2.3.1 Graded Modules

Let k be a ring. We call *graded* k–module any k–module of the form
\[M = \bigoplus_{n=-\infty}^{n=\infty} M_n \]
where, for each n, M_n is a finitely generated k–module, and $M_n = 0$ whenever $n < N$ for some integer N (i.e., “for n small enough”).

For each integer n, the non-zero elements of M_n are said to be homogeneous of degree n. If $x = \sum_n x_n$ where $x_n \in M_n$, then the element x_n is called the homogeneous component of degree n of x.

A graded module homomorphism $M \rightarrow N$ is a linear map $f : M \rightarrow N$ such that, for each $n \in \mathbb{Z}$, we have $f(M_n) \subset N_n$.

From now on, we suppose that k is a field. The graded k–modules are then called graded k–vector spaces.

We set $\mathbb{Z}(q) := \mathbb{Z}[[q]][q^{-1}]$, the ring of formal Laurent series with coefficients in \mathbb{Z}. The graded dimension of M is the element of $\mathbb{Z}(q)$ defined by

$$\text{grdim}_k(M) := \sum_{n=-\infty}^{\infty} \dim_k(M_n)q^n.$$

2.3.2 Elementary Constructions

- **Direct sum:** if M and N are two graded modules, then the graded module $M \oplus N$ is defined by the condition $(M \oplus N)_n := M_n \oplus N_n$. If k is a field, then we have

 $$\text{grdim}_k(M \oplus N) = \text{grdim}_k(M) + \text{grdim}_k(N).$$

- **Tensor product:** if M and N are two graded modules, then the graded module $M \otimes N$ is defined by the condition $(M \otimes N)_n := \bigoplus_{i+j=n} M_i \otimes N_j$. If k is a field, then we have

 $$\text{grdim}_k(M \otimes N) = \text{grdim}_k(M)\text{grdim}_k(N).$$

- **Shift:** if M is a graded module and m is an integer, then the graded module $M[m]$ is defined by the condition $M[m]_n := M_{m+n}$. If k is a field, then we have

 $$\text{grdim}_k(M[m]) = q^{-m}\text{grdim}_k(M).$$

Example 2.22. Let k be a field.

- If t is transcendental over k and of degree d, then we have $\text{grdim}_k(k[t]) = 1/(1 - q^d)$.

- More generally, if t_1, t_2, \ldots, t_r are algebraically independent elements over k of degree d_1, d_2, \ldots, d_r respectively, then we have $k[t_1, t_2, \ldots, t_r] \simeq k[t_1] \otimes k[t_2] \otimes \cdots \otimes k[t_r]$ and

 $$\text{grdim}_k(k[t_1, t_2, \ldots, t_r]) = \frac{1}{(1 - q^{d_1})(1 - q^{d_2})\cdots(1 - q^{d_r})}.$$
• If M has dimension 1 and is generated by an element of degree d, then we have $M \cong k[-d]$, and $\text{grdim}_k(M) = q^d$.

• If V is a vector space of finite dimension r, then the symmetric algebra $S(V)$ and the exterior algebra $\Lambda(V)$ of V are naturally endowed with structures of graded vector spaces, and we have

$$\text{grdim}_k(S(V)) = \frac{1}{(1 - q)^r} \quad \text{and} \quad \text{grdim}_k(\Lambda(V)) = (1 + q)^r.$$

A linear map $f : M \to N$ between two graded vector spaces is said to be of degree m if, for all n, we have $f(M_n) \subset N_{n+m}$. Thus, a map of degree m defines a homomorphism from M to $N[m]$.

Suppose then that

$$0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$$

is an exact sequence of k–vector spaces, where M', M, and M'' are graded, and where α and β are maps of degree a and b respectively. We then have an exact sequence of graded vector spaces

$$0 \to M' \xrightarrow{\alpha} M[a] \xrightarrow{\beta} M''[a+b] \to 0,$$

whence the formula

$$\text{grdim}_k(M'') - q^b \text{grdim}_k(M) + q^{a+b} \text{grdim}_k(M') = 0.$$

2.3.3 Koszul Complex

Let V be a vector space of dimension r. Let $S := S(V)$ and $A := A(V)$. The Koszul complex is the complex

$$0 \to S \otimes A^r \xrightarrow{\delta_r} S \otimes A^{r-1} \xrightarrow{\delta_{r-1}} \cdots \xrightarrow{\delta_1} S \otimes A^0 \xrightarrow{k} 0$$

where the homomorphism $S \otimes A^0 \to k$ is the homomorphism defined by $v \mapsto 0$ for all $v \in V$, and where the homomorphism δ_j is defined in the following way:

$$\delta_j(y \otimes (x_1 \wedge \cdots \wedge x_j)) = \sum_i (-1)^{i+1} yx_i \otimes (x_1 \wedge \cdots \wedge \hat{x_i} \wedge \cdots \wedge x_j).$$
If we endow $S \otimes A^j$ with the graduation of S, the homomorphism δ_j has thus degree 1, and the homomorphism $S \otimes A^0 \to k$ has degree 0.

One can prove (see for example [Ben], lemma 4.2.1) that the Koszul complex is exact. It follows that

$$1 = \sum_{j=0}^r (-1)^j \dim(A^j) \dim_k(S),$$

or, equivalently,

$$1 = \dim_k(A)(-q) \dim_k(S)(q).$$

2.3.4 Graded Algebras and Modules

Let k be a (noetherian) ring. We call graded k–algebra any finitely generated algebra over k of the form $A = \bigoplus_{n=0}^{\infty} A_n$, with $A_0 = k$, and $A_n A_m \subset A_{n+m}$ for any integers n and m. We then write \mathfrak{M} for the maximal ideal of A defined by

$$\mathfrak{M} := \bigoplus_{n=1}^{\infty} A_n.$$

A graded A–module M is then a (finitely generated) A–module of the form $M = \bigoplus_{n=-\infty}^{\infty} M_n$ where $A_n M_m \subset M_{n+m}$ for all n and m, and where M_n is zero if $n < N$ for some integer N.

Each homogeneous component M_n is a finitely generated k–module.

Indeed, A is a noetherian ring, and we have $M_n \cong \bigoplus_{m \geq n} M_m / \bigoplus_{m > n} M_m$, which proves that M_n is finitely generated over A/\mathfrak{M}.

A graded A–module homomorphism is an A–module homomorphism which is a graded k–module homomorphism.

A submodule N of a graded A–module is an A–submodule such that the natural injection is a graded k–module homomorphism, i.e., such that $N = \bigoplus_{n} (N \cap M_n)$.

A graded (or “homogeneous”) ideal of A is a graded submodule of A, seen as graded module over itself. If \mathfrak{a} is an ideal of A, then the following conditions are equivalent:

(i) \mathfrak{a} is a graded ideal,

(ii) $\mathfrak{a} = \bigoplus_{n} (\mathfrak{a} \cap A_n),$

(iii) for all $a \in \mathfrak{a}$, each homogeneous component of a belongs to $\mathfrak{a},$

(iv) \mathfrak{a} is generated by homogeneous elements.

2.3.5 The Hilbert–Serre Theorem

Theorem 2.23. Let k be a field. Let $A = k[x_1, x_2, \ldots, x_r]$ be a graded k–algebra, generated by homogeneous elements of degree d_1, d_2, \ldots, d_r.
respectively. Let M be a graded A–module. Then there exists $P(q) \in \mathbb{Z}[q, q^{-1}]$ such that the graded dimension of M over k is

$$\text{grdim}_k(M) = \frac{P(q)}{(1 - q^{d_1})(1 - q^{d_2}) \cdots (1 - q^{d_r})}.$$

Proof (of 2.23). We use induction on r. The theorem is obvious if $r = 0$, so we suppose that $r > 0$. Let M' and M'' be the kernel and cokernel of multiplication by x_r respectively. We thus have the following exact sequence of graded A–modules:

$$0 \to M' \xrightarrow{x_r} M \xrightarrow{x_r} M'[d_r] \to M''[d_r] \to 0,$$

whence the equality

$$q^{d_r} \text{grdim}_k(M') - q^{d_r} \text{grdim}_k(M) + \text{grdim}_k(M) - \text{grdim}_k(M'') = 0.$$

Now M' and M'' are both graded modules over $k[x_1, \ldots, x_{r-1}]$, so that, by the induction hypothesis, there exist $P'(q), P''(q) \in \mathbb{Z}[q, q^{-1}]$ such that

$$\text{grdim}_k(M') = \frac{P'(q)}{(1 - q^{d_1})(1 - q^{d_2}) \cdots (1 - q^{d_{r-1}})}$$

and

$$\text{grdim}_k(M'') = \frac{P''(q)}{(1 - q^{d_1})(1 - q^{d_2}) \cdots (1 - q^{d_{r-1}})}.$$

The theorem follows immediately.

2.3.6 Nakayama’s Lemma

Let k be a (commutative) field, and let A a graded k-algebra.

Convention

We make the convention that

- “ideal of A” means “graded ideal of A”,
- “element of A” means “homogeneous element of A”.

It can be shown that the “graded Krull dimension” of A, (i.e., the maximal length of chains of (graded) prime ideals of A) coincides with its “abstract” Krull dimension (i.e., the maximal length of chains of any prime ideals of A).
Nakayama’s Lemma

With the above conventions, Nakayama’s lemma takes the following form.

Lemma 2.24. Let A be a graded k–algebra, with maximal ideal \mathfrak{M}, and let M be an A–module. If $\mathfrak{M}M = M$, then $M = 0$.

Proof (of 2.24). Indeed, then we know that there exists $a \in \mathfrak{M}$ such that $(1 - a)M = 0$. If $M \neq 0$, then let m be a non-zero (homogeneous) element of M. The equality $m = am$ yields a contradiction.

Lemma 2.25.

(S1) If M' is a submodule of the A–module M, then $M' = M$ if and only if $M = M' + \mathfrak{M}M$.

(S2) If $f : M \to N$ is an A–module homomorphism which induces a surjection from M onto $N/\mathfrak{M}N$, then f is surjective.

(S3) A system (x_1, x_2, \ldots, x_s) of elements of M is a generating system for M if and only if its image in $M/\mathfrak{M}M$ is a generating system of the k–vector space $M/\mathfrak{M}M$. In particular, all the minimal generating systems have the same order, which is the dimension of $M/\mathfrak{M}M$ over k.

Proof (of 2.25). For (S1), we apply 2.24 to the module M/M'.

For (S2), we apply (S1) to the module N and the submodule $f(M)$.

For (S3), we apply (S2) to the module $F := \bigoplus_j A[\deg(x_j)]$ and the homomorphism $F \to M$ defined by the system we consider.

If M is an A–module, we write $r(M)$ and call rank of M the dimension of $M/\mathfrak{M}M$ over k.

Proposition 2.26. Let R be a graded algebra, with maximal graded ideal \mathfrak{M}. Let (u_1, u_2, \ldots, u_n) be a family of homogeneous elements of R with positive degrees.

1. The following assertions are equivalent:
 (i) $R = k[u_1, u_2, \ldots, u_n]$,
 (ii) $\mathfrak{M} = Ru_1 + Ru_2 + \cdots + Ru_n$,
 (iii) $\mathfrak{M}/\mathfrak{M}^2 = ku_1 + ku_2 + \cdots + ku_n$.

2. Assume moreover that R is a graded polynomial algebra with Krull dimension r. Then the following assertions are equivalent:
 (i) $n = r$, (u_1, u_2, \ldots, u_r) are algebraically independent, and $R = k[u_1, u_2, \ldots, u_r]$,
 (ii) (u_1, u_2, \ldots, u_n) is a minimal set of generators of the R–module \mathfrak{M},
 (iii) (u_1, u_2, \ldots, u_n) is a basis of the k–vector space $\mathfrak{M}/\mathfrak{M}^2$.
Proof (of 2.26).

(1) The implications (i)⇒(ii)⇒(iii) are clear. The implication (iii)⇒(ii) is a direct application of Nakayama’s lemma to the \(R \)-module \(\mathfrak{M} \). Finally if (ii) holds, the image of \(k[u_1, u_2, \ldots, u_n] \) modulo \(\mathfrak{M} \) is \(k \), hence \(k[u_1, u_2, \ldots, u_n] = R \) again by Nakayama’s lemma.

(2) The equivalence between (ii) and (iii) follows from Nakayama’s lemma. If (i) holds, then \((u_1, u_2, \ldots, u_n) \) generates \(\mathfrak{M} \) by (1), and if it contains a proper system of generators of \(R \), say \((u_1, u_2, \ldots, u_m) \) \((m < r)\) then again by (1) we have \(R = k[u_1, u_2, \ldots, u_m] \), a contradiction with the hypothesis about the Krull dimension of \(R \).

Assume (iii) holds. Since \(R \) is a polynomial algebra with Krull dimension \(r \), and since (i)⇒(iii), we see that the dimension of \(\mathfrak{M}/\mathfrak{M}^2 \) is \(r \). Hence \(n = r \), and since \(R = k[u_1, u_2, \ldots, u_r] \) (by (1)), we see that \((u_1, u_2, \ldots, u_r) \) is algebraically independent (otherwise the Krull dimension of \(R \) would be less than \(r \)).

Lemma 2.27. Let \(A \) be a graded \(k \)-algebra, and let \(M \) be a finitely generated projective \(A \)-module. Then \(M \) is free.

Proof (of 2.27). Let \(\mathfrak{M} := \sum_{n \geq 1} A_n \) be the unique maximal ideal of \(A \). Then \(M/\mathfrak{M}M \) is a (left) finite dimensional vector space over the field \(k \). Let \(d \) denote its dimension. The isomorphism \(k^d = (A/\mathfrak{M})^d \cong M/\mathfrak{M}M \) can be lifted (by projectivity of \(A^d \)) to a morphism \(A^d \to M \), which is onto by Nakayama’s lemma. Since \(M \) is projective, we get a split short exact sequence

\[
0 \to M' \to A^d \to M \to 0.
\]

Note that \(M' \) is then a direct summand of \(A^d \), hence is also finitely generated. Tensoring with \(k = A/\mathfrak{M}A \), this exact sequence gives (since it is split) the short exact sequence

\[
0 \to M'/fM' \to k^d \to M/\mathfrak{M}M \to 0,
\]

which shows that \(M'/\mathfrak{M}M' = 0 \), hence again by Nakayama’s lemma \(M' = 0 \). Thus we get that \(M \) is isomorphic to \(A^d \).

2.4 Polynomial Algebras and Parameters Subalgebras

2.4.1 Degrees and Jacobian

Let \(S = k[v_1, v_2, \ldots, v_r] \) be a polynomial graded algebra over the field \(k \), where \((v_1, v_2, \ldots, v_r) \) is a family of algebraically independent, homogeneous elements, with degrees respectively \(e_1, e_2, \ldots, e_r \). Assume \(e_1 \leq e_2 \leq \cdots \leq e_r \).
Let \((u_1, u_2, \ldots, u_r)\) be a family of homogeneous elements with degrees \(d_2, d_2, \ldots, d_r\) such that \(d_1 \leq d_2 \leq \cdots \leq d_r\).

Lemma 2.28. Assume that \((u_1, u_2, \ldots, u_r)\) is algebraically free.

1. For all \(i \ (1 \leq i \leq r)\), we have \(e_i \leq d_i\).
2. We have \(e_i = d_i\) for all \(i \ (1 \leq i \leq r)\) if and only if \(S = k[u_1, u_2, \ldots, u_r]\).

Proof (of 2.28).

(1) Let \(i\) such that \(1 \leq i \leq r\). The family \((u_1, u_2, \ldots, u_i)\) is algebraically free, hence it cannot be contained in \(k[v_1, v_2, \ldots, v_{i-1}]\). Hence there exist \(j \geq i\) and \(l \leq i\) such that \(v_j\) does appear in \(u_l\). It follows that \(e_j \leq u_l\), hence \(e_i \leq e_j \leq d_l \leq d_i\).

(2) We know that \(\text{grdim} R = (\prod_{i=1}^{r} (1 - q^{e_i}))^{-1}\). Thus it suffices to prove that \(\prod_{i=1}^{r} (1 - q^{e_i}) = \prod_{i=1}^{r} (1 - q^{d_i})\) if and only if \(e_i = d_i\) for all \(i \ (1 \leq i \leq r)\), which is left as an exercise.

By 2.28, we see in particular that the family \((e_1, e_2, \ldots, e_r)\) (with \(e_1 \leq e_2 \leq \cdots \leq e_r\)) is uniquely determined by \(R\). Such a family is called the **family of degrees of** \(R\).

Let us now examine the algebraic independance of the \((u_1, u_2, \ldots, u_r)\).

Definition 2.29. The **Jacobian** of \((u_1, u_2, \ldots, u_r)\) relative to \((v_1, v_2, \ldots, v_r)\) is the homogeneous element of degree \(\sum_i (d_i - e_i)\) defined by

\[
\text{Jac}((u_1, u_2, \ldots, u_r)/(v_1, v_2, \ldots, v_r)) := \det \left(\frac{\partial u_i}{\partial v_j} \right)_{i,j}.
\]

Proposition 2.30.

1. \(\text{Jac}((u_1, u_2, \ldots, u_r)/(v_1, v_2, \ldots, v_r))\) is a homogeneous element of \(S\) with degree \(\sum_i (d_i - e_i)\).
2. The family \((u_1, u_2, \ldots, u_r)\) is algebraically free if and only if \(\text{Jac}((u_1, u_2, \ldots, u_r)/(v_1, v_2, \ldots, v_r)) \neq 0\).
3. We have \(k[u_1, u_2, \ldots, u_r] = k[v_1, v_2, \ldots, v_r]\) if and only if \(\text{Jac}((u_1, u_2, \ldots, u_r)/(v_1, v_2, \ldots, v_r)) \in k^\times\).

Proof (of 2.30).

(1) is trivial.

Proof of (2).

(a) Assume that \((u_1, u_2, \ldots, u_r)\) is algebraically dependant.
Let $P(t_1, t_2, \ldots, t_r) \in k[t_1, t_2, \ldots, t_r]$ be a minimal degree polynomial subject to the condition $P(u_1, u_2, \ldots, u_r) = 0$. Let us differentiate that equality relatively to v_j:

$$
\sum_i \frac{\partial P}{\partial t_i}(u_1, u_2, \ldots, u_r) \frac{\partial u_i}{\partial v_j} = 0.
$$

There is i such that $\frac{\partial P}{\partial t_i} \neq 0$, and by minimality of P we have $\frac{\partial P}{\partial t_i}(u_1, \ldots, u_r) \neq 0$, which shows that the matrix $(\frac{\partial u_i}{\partial v_j})_{i,j}$ is singular and so that

$$
\text{Jac}((u_1, u_2, \ldots, u_r)/(v_1, v_2, \ldots, v_r)) = 0.
$$

(b) Assume that (u_1, u_2, \ldots, u_r) is algebraically free.

For each i, let us denote by $P_i(t_0, t_1, \ldots, t_r) \in k[t_0, t_1, \ldots, t_r]$ a polynomial with minimal degree such that $P_i(v_i, u_1, u_2, \ldots, u_r) = 0$. Let us differentiate that equality relatively to v_j:

$$
\frac{\partial P_i}{\partial t_0}(v_i, u_1, u_2, \ldots, u_r) + \sum_l \frac{\partial P_i}{\partial t_l}(v_i, u_1, u_2, \ldots, u_r) \frac{\partial u_l}{\partial v_j} = 0,
$$

which can be rewritten as an identity between matrices:

$$
(\frac{\partial P_i}{\partial t_l}(v_i, u_1, u_2, \ldots, u_r))_{i,l} \cdot (\frac{\partial u_l}{\partial v_j})_{i,j} = -D((\frac{\partial P_i}{\partial t_0}(v_i, u_1, u_2, \ldots, u_r))_{i,l}),
$$

where $D((\lambda_i))$ denotes the diagonal matrix with spectrum (λ_i).

Since, for all i, we have $\frac{\partial P_i}{\partial t_0}(v_i, u_1, u_2, \ldots, u_r) \neq 0$ (by minimality of P_i), we see that the matrix $(\frac{\partial u_l}{\partial v_j})_{i,j}$ is nonsingular.

(3) follows from 2.28 and from (1).

2.4.2 Systems of Parameters

Let A be a finitely generated graded k–algebra.

Definition 2.31. A system of parameters of A is a family (x_1, x_2, \ldots, x_r) of homogeneous elements in A such that

1. (x_1, x_2, \ldots, x_r) is algebraically free,
2. A is a finitely generated $k[x_1, x_2, \ldots, x_r]$–module.
We ask the reader to believe, to prove, or to check in the appropriate literature the following fundamental result.

Theorem 2.32.

1. There exists a system of parameters.
2. All systems of parameters have the same cardinal, equal to $\text{Krdim}(A)$.
3. If (x_1, x_2, \ldots, x_m) is a system of homogeneous elements of A such that $m \leq \text{Krdim}(A)$ and if A is finitely generated as a $k[x_1, x_2, \ldots, x_m]$-module, then $m = \text{Krdim}(A)$ and (x_1, x_2, \ldots, x_m) is a system of parameters of A.
4. The following assertions are equivalent.
 (i) There is a system of parameters (x_1, x_2, \ldots, x_r) of A such that A is a free module over $k[x_1, x_2, \ldots, x_r]$.
 (ii) Whenever (x_1, x_2, \ldots, x_r) is a system of parameters of A, A is a free module over $k[x_1, x_2, \ldots, x_r]$.

In that case we say that A is a Cohen-Macaulay algebra.

We shall now give some characterizations or systems of parameters of a polynomial algebra.

In what follows, we denote by

- k an algebraically closed field,
- $S = k[v_1, v_2, \ldots, v_r]$ a polynomial algebra, where (v_1, v_2, \ldots, v_r) is a family of homogeneous algebraically independent elements with degrees (e_1, e_2, \ldots, e_r),
- (u_1, u_2, \ldots, u_r) is a family of nonconstant homogeneous elements of S with degrees respectively (d_1, d_2, \ldots, d_r)
- $R := k[u_1, u_2, \ldots, u_r]$, and \mathfrak{M} the maximal graded ideal of R.

Proposition 2.33.

1. The following assertions are equivalent.
 (i) $(x = 0)$ is the unique solution in k^r of the system

 $u_1(x) = u_2(x) = \cdots = u_r(x) = 0$.

 (ii) $S/\mathfrak{M}S$ is a finite dimensional k-vector space.
 (iii) S is a finitely generated R-module.
 (iv) (u_1, u_2, \ldots, u_r) is a system of parameters of S.

2. If the preceding conditions hold, then

3. S is a free R-module, and its rank is $\prod_i d_i / \prod_i e_i$.

4. The map

 \[
 \begin{cases}
 k^r \rightarrow k^r \\
 x \mapsto (u_1(x), u_2(x), \ldots, u_r(x))
 \end{cases}

 is onto.
Proof (of 2.33). Let us prove (1).

- (i)⇒(ii). Since $S/\mathfrak{M}S$ is a finitely generated k–algebra, it suffices to prove that $S/\mathfrak{M}S$ is algebraic over k. Since the set $V(\mathfrak{M}S)$ of zeros of $\mathfrak{M}S$ reduces to $\{0\}$ by assumption, and since all the indeterminates v_i vanish on that set, it follows from the strong Nullstellensatz that for all i there is an integer $n_i \geq 1$ such that $v_i^{n_i} \in \mathfrak{M}S$, hence $v_i^{n_i} = 0$ in $S/\mathfrak{M}S$, proving that $S/\mathfrak{M}S$ is indeed an algebraic extension of k.

- (ii)⇒(iii) results from Nakayama lemma.

- (iii)⇒(iv) results from the general properties of systems of parameters (see 2.32, (3)).

- (iv)⇒(i). Let $V(\mathfrak{M}S)$ be the set of zeros of $\mathfrak{M}S$. In order to prove that $|V(\mathfrak{M}S)| \leq \dim(S/\mathfrak{M}S)$. Let $x_1, x_2, \ldots, x_n \in V(\mathfrak{M}S)$ be pairwise distinct. Consider the map

$$
\begin{cases}
S \to k^n \\
u \mapsto (u(x_1), u(x_2), \ldots, u(x_n))
\end{cases}
$$

That map factorizes through $S/\mathfrak{M}S$. But the interpolation theorem shows that it is onto, which proves that $n \leq \dim(S/\mathfrak{M}S)$.

Remark 2.34 (The interpolation theorem). Let V be a k–vector space with dimension r, and let S be its symmetric algebra, isomorphic to the algebra polynomial in r indeterminates. Let x_1, x_2, \ldots, x_n be pairwise distinct elements of V. Then the map

$$
\begin{cases}
S \to k^n \\
u \mapsto (u(x_1), u(x_2), \ldots, u(x_n))
\end{cases}
$$

is onto.

Indeed, for each pair (i, j) with $i \neq j$, let us choose a linear form $t_{i,j} : V \to k$ such that $t_{i,j}(x_i) \neq t_{i,j}(x_j)$. Then the polynomial function u_i on V defined by

$$
\begin{align*}
u_i(v) := \prod_{i \neq j} \frac{t_{i,j}(v) - t_{i,j}(x_j)}{t_{i,j}(x_i) - t_{i,j}(x_j)}
\end{align*}
$$

satisfies $u_i(x_j) = \delta_{i,j}$.

Let us prove (2)

(a) Since S is free over itself, it is Cohen-Macaulay (see 2.32, (4), hence is free over R. Thus we have

$S \simeq R \otimes_k (S/\mathfrak{M}S)$, which implies $\text{grdim}(S) = \text{grdim}(R)\text{grdim}(S/\mathfrak{M}S)$.
It follows that
\[\text{grdim}(S/M) = \prod_i (1 + q + \cdots + q^{d_i-1}) \]
\[\prod_i (1 + q + \cdots + q^{e_i-1}) \]
hence
\[\dim(S/M) = \text{grdim}(S/M)_{q=1} = \prod_i d_i \prod_i e_i. \]

(b) Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r) \in k^r \). We are looking for \(\mu = (\mu_1, \mu_2, \ldots, \mu_r) \in k^r \) such that, for all \(i \) (1 \(\leq i \leq r \)), we have \(u_i(\mu) = \lambda_i \).

Consider the maximal ideal \(M_{\lambda} \) of \(R \) defined by \(\lambda \), i.e., the kernel of the morphism
\[\varphi_{\lambda}: \begin{cases} R = k[u_1, u_2, \ldots, u_r] \longrightarrow k \\ u_j \mapsto \lambda_j. \end{cases} \]
By Cohen-Seidenberg theorem, there is a maximal ideal \(N \) of \(S \) such that \(N \cap R = M_{\lambda} \). By Nullstellensatz, there is \(\mu = (\mu_1, \mu_2, \ldots, \mu_r) \in k^r \) such that \(N = N_{\mu} \), i.e., \(N \) is the kernel of the morphism
\[\psi_{\mu}: \begin{cases} S = k[v_1, v_2, \ldots, v_r] \longrightarrow k \\ v_i \mapsto \mu_i. \end{cases} \]
which, restricted to \(R \), is \(\varphi_{\lambda} \). Thus for all \(i \) we have \(u_i(\mu) = \lambda_i \).

2.4.3 The Chevalley Theorem

Theorem 2.35. Let \(S \) a polynomial algebra: there exist a system \((v_1, v_2, \ldots, v_r)\) of homogeneous algebraically independent elements such that \(S = k[v_1, v_2, \ldots, v_r] \). Let \(R \) be a graded subalgebra of \(S \) such that \(S \) is a finitely generated \(R \)-module.

The following assertions are equivalent:

(i) \(S \) is a free \(R \)-module,

(ii) \(R \) is a polynomial algebra: whenever \((u_1, u_2, \ldots, u_n)\) is a system of homogeneous elements of \(R \) which is a generating system for the maximal graded ideal \(M \) of \(R \), and such that \(n \) is minimal for that property, then \(n = r \), \(R = k[u_1, u_2, \ldots, u_r] \), and \((u_1, u_2, \ldots, u_n)\) is algebraically independent.

Proof (of 2.35). The implication (ii)\(\Rightarrow \) (i) results from the fact that \(S \) is Cohen–Macaulay (see 2.32).

Remark 2.36. The implication (i)\(\Rightarrow \) (ii) has a natural homological proof (see for example [Se2]): in order to prove that \(R \) is a regular graded algebra, it
suffices to prove that it has finite global dimension, which results easily from the same property for \(S \) and from the fact that \(S \) is free over \(R \). We provide below a self-contained and elementary proof, largely inspired by [Bou1], chap. V, §5, Lemme 1.

Let \((u_1, u_2, \ldots, u_n)\) be a system of homogeneous elements of \(R \) which is a generating system for the maximal graded ideal \(\mathfrak{M} \) of \(R \), and assume that \(n \) is minimal for that property. It is clear that \(R \) is generated by \((u_1, u_2, \ldots, u_n)\) as a \(k \)-algebra. We shall prove that \((u_1, u_2, \ldots, u_n)\) is algebraically independent (from which it results that \(n = r \)).

Assume not. Let \(k[t_1, t_2, \ldots, t_n] \) be the polynomial algebra in \(n \) indeterminates, graduated by \(\deg t_i := \deg u_i \). Let \(P(t_1, t_2, \ldots, t_m) \in k[t_1, t_2, \ldots, t_m] \) be a homogeneous polynomial with minimal degree such that

\[P(u_1, u_2, \ldots, u_n) = 0. \]

Let us set \(\delta_i := \frac{\partial P}{\partial t_i}(u_1, u_2, \ldots, u_n) \) and let us denote by \(\delta \mathfrak{M} \) the (graded) ideal of \(R \) generated by \((\delta_1, \delta_2, \ldots, \delta_n)\).

Choose \(I \subseteq \{1, 2, \ldots, n\} \) minimal such that \(\delta \mathfrak{M} \) is generated by the family \((\delta_i)_{i \in I} \). So we have

\[(\forall j \notin I) \quad \delta_j = \sum_{i \in I} a_{i,j} \delta_i \quad \text{with } a_{i,j} \in R. \]

Since we have for all \(l \)

\[0 = \frac{\partial P}{\partial v_l}(u_1, u_2, \ldots, u_n) = \sum_{i=1}^{n} \delta_i \cdot \frac{\partial u_i}{\partial v_l}(u_1, u_2, \ldots, u_n), \]

replacing \(\delta_j \) (for \(j \notin I \)) by its value we get

\[\sum_{i \in I} \delta_i \left(\frac{\partial u_i}{\partial v_l} + \sum_{j \notin I} a_{i,j} \frac{\partial u_j}{\partial v_l} \right) = 0 \quad (\star) \]

Let us set \(x_{i,l} := \frac{\partial u_i}{\partial v_l} + \sum_{j \notin I} a_{i,j} \frac{\partial u_j}{\partial v_l} \) so that the relation \((\star)\) becomes

\[\sum_{i \in I} x_{i,l} \delta_i = 0. \quad (\star) \]

- We shall prove that \(x_{i,l} \in \mathfrak{M} S \).

For that purpose, let us remember the hypothesis by introducing a basis \((e_\alpha)_\alpha\) of \(S \) as an \(R \)-module. We have
2.4 Polynomial Algebras and Parameters Subalgebras

\[x_{i,l} = \sum_{\alpha} \lambda_{i,l,\alpha} e_{\alpha} \]

with \(\lambda_{i,l,\alpha} \in R \). We want to prove that, for all \(i, j, \alpha \), we have \(\lambda_{i,l,\alpha} \in \mathfrak{M} \).

The relation (*) implies that, for all \(l \) and \(\alpha \),

\[\sum_{i \in I} \lambda_{i,l,\alpha} \delta_{i} = 0. \]

Assume that for some \(i_0, l_0, \alpha_0 \), we have \(\lambda_{i_0,l_0,\alpha_0} \notin \mathfrak{M} \). Let us then consider the projection of the above equality onto the space of elements with degree \(\deg \delta_{i_0} \). We get a relation

\[\sum_{i \in I} \lambda'_{i_0,l_0,\alpha_0} \delta_{i} = 0 \text{ where } \lambda'_{i_0,l_0,\alpha_0} \in k^x, \]

i.e., an expression of \(\delta_{i_0} \) as linear combination of the \(\delta_{i} \) (\(i \neq i_0 \)), a contradiction with the minimality of \(I \).

\[\bullet \] Let us multiply by \(v_l \) both sides of the equality \(x_{i,l} := \frac{\partial u_i}{\partial v_l} + \sum_{j \in I} a_{i,j} \frac{\partial u_j}{\partial v_l} \)

which defines \(x_{i,l} \), and then sum up over \(l = 1, 2, \ldots, r \). By the Euler relation, we get (for \(i \in I \))

\[\deg(u_i)u_i + \sum_{j \notin I} a_{i,j} \deg(u_j)u_j = \sum_{l} x_{i,l} v_l. \]

Since \(x_{i,l} \in \mathfrak{M}S \), the above equality shows that (for \(i \in I \))

\[\deg(u_i)u_i + \sum_{j \notin I} a_{i,j} \deg(u_j)u_j = \sum_{l} x_{i,l} u_l \]

where, for all \(l \), \(x_l \) is a positive degree (homogeneous) element of \(S \). Projecting onto the space of elements with degree \(\deg(u_i) \), we get that, for all \(i \in I \), \(u_i \) is a linear combination (with coefficients in \(S \)) of the \(u_j \) (\(j \neq i \)).

\[\bullet \] Since \(S \) is free as an \(R \)-module, it results from Nakayama’s lemma that any system of elements of \(S \) which defines a \(k \)-basis of \(R/\mathfrak{M}R \) is also an \(R \)-basis of \(S \). In particular there exists a basis of \(S \) over \(R \) which contains \(1 \), and so there is an \(R \)-linear projection \(\pi : S \twoheadrightarrow R \).

Now if \(u_i = \sum_{l \neq i} y_l u_l \) with \(y_l \in S \), by applying \(\pi \) to that equality we get \(u_i = \sum_{l \neq i} \pi(y_l)u_l \), an \(R \)-linear dependance relation on the set of \((u_l)_{1 \leq l \leq n} \), a contradiction with the minimality of \(n \).
Introduction to Complex Reflection Groups and Their Braid Groups
Broué, M.
2010, XII, 144 p., Softcover
ISBN: 978-3-642-11174-7