Contents

Part I Technology and Probe Design

Computed Tomography and Magnetic Resonance Imaging 3
1 Imaging Targets in Cancer 4
 1.1 Introduction 4
 1.2 Physiological Imaging Targets 5
 1.3 Molecular Targets 7
 1.4 Cellular Targets 8
 1.5 Image-Guided Drug Delivery 8
2 Recent Technological Developments in X-ray Computed Tomography of Cancer 9
 2.1 Basics of Multi-Slice Spiral Computed Tomography 9
 2.2 Multi-Energy Computed Tomography 13
 2.3 Preclinical Computed Tomography 14
 2.4 Dedicated Imaging Systems and New Developments 15
 2.5 Multimodality Imaging 16
3 Recent Technological Developments in Magnetic Resonance Imaging of Cancer 16
 3.1 Magnetic Resonance Imaging: Introduction 16
 3.2 MRI Signal Formation and Contrast 17
 3.3 Magnetic Field Strength and Signal Sensitivity 21
 3.4 Imaging Gradients, Signal Encoding, and Signal Reception Chain 21
 3.5 MRI Pulse Sequences, Parametric Mapping 23
 3.6 Contrast-Enhanced MRI 24
4 Imaging Biomarkers in Cancer 25
 4.1 Imaging Biomarkers: X-ray Computed Tomography 25
 4.2 Imaging Biomarkers: Magnetic Resonance Imaging 26
5 Magnetic Resonance Imaging Probes in Cancer 33
 5.1 Introduction 33
 5.2 Non-Targeted Probes 33
 5.3 Targeted Probes 43
 5.4 Responsive Probes 43
 5.5 Reporter Genes 45
Single Photon Emission Computed Tomography Tracer

1 Introduction

2 General Aspects for the Design of SPECT Tracers

3 Peptide-Receptor Radionuclide Imaging

 3.1 Somatostatin Analogs

 3.2 Bombesin Analogs

 3.3 Neurotensin Analogs

 3.4 Other Peptides-Based Radiotracers

4 Antibodies and Antibody Fragments

5 Vitamin-Based Radiotracers

6 Intracellular Targets

7 Optimization of SPECT Tracer Design and Potential Reasons for Failure

8 Summary and Conclusion

Non-peptidyl 18F-Labelled PET Tracers as Radioindicators for the Noninvasive Detection of Cancer

1 Introduction

2 [18F]FDG for Imaging Glucose Metabolism

3 18F-Labelled Amino Acids (AAs) for Imaging AA Transport and Protein Synthesis

 3.1 O-(2-[18F]Fluoroethyl)-L-tyrosine ([18F]FET)

 3.2 6-[18F]Fluoro-3,4-dihydroxy-L-phenylalanine ([18F]FDOPA)

4 18F-Labelled Choline Derivatives for Imaging Membrane Lipid Synthesis

5 18F-Labelled Nucleoside Derivatives for Imaging Cell Proliferation
5.1 3'-Deoxy-3'-[\(^{18}\text{F}\)]fluoro-l-thymidine ([\(^{18}\text{F}\)]FLT) 118
5.2 1-(2'-Deoxy-2'-[\(^{18}\text{F}\)]fluoro-\(\beta\)-d-arabinofuranosyl)-5-
 methyluracil ([\(^{18}\text{F}\)]FMAU) .. 119
6 \(^{18}\text{F}\)-Labelled Nitroimidazole Derivatives for Imaging
 Tumour Hypoxia ... 120
 6.1 \([^{18}F]\)Fluoromisonidazole ([\(^{18}\text{F}\)]FMISO) 120
 6.2 1-(5-Deoxy-5-[\(^{18}\text{F}\)]Fluoro-\(\alpha\)-d-arabinofuranosyl)-2-
 nitroimidazole ([\(^{18}\text{F}\)]FAZA) ... 122
7 \([^{18}\text{F}]\)FES for Imaging Estrogen Receptor Status 122
8 \([^{18}\text{F}]\)Fluoride for Imaging Bone Metabolism 124
9 Perspectives ... 124
References ... 125

Optical and Opto-Acoustic Imaging .. 133
1 Introduction ... 134
2 Multi-Spectral Optoacoustic Tomography 135
 2.1 Sensitivity of Biomarker Detection 139
 2.2 Other Applications of Optoacoustic Imaging 142
3 FMT-XCT ... 142
4 Overview of Performance Characteristics 145
5 Quantification ... 146
6 Optical Imaging Applications in Oncology 148
References ... 149

Multifunctional Magnetic Resonance Imaging Probes 151
1 The Need for Imaging and Contrast Agents in Oncology 152
2 Imaging Techniques and Contrast Agents 155
 2.1 Magnetic Resonance Imaging of Cancer 155
 2.2 Multifunctional Imaging Probes 159
3 Probing the Tumor Vasculature ... 161
 3.1 Dynamic Contrast-Enhanced MRI 162
 3.2 Macromolecular Dynamic Contrast-Enhanced MRI 164
4 Molecular Imaging ... 167
5 Combined Imaging and Therapy .. 175
6 Translations and Future Outlook 181
References ... 183

Part II Preclinical Studies

Preclinical SPECT and SPECT/CT .. 193
1 Introduction ... 194
Part I: Considerations when Evaluating the Potential Role of SPECT/CT Imaging in a Preclinical Oncology Research Application

2.1 Choice and Implications of Various Small Animal Models of Cancer

2.2 Framing the Research Question in Imaging Terms

2.3 Available in vivo Imaging Modalities and Characteristics of Preclinical Oncology Applications Amenable to SPECT

2.4 SPECT Versus SPECT/CT

Part II: Technical Considerations when Implementing SPECT/CT in Preclinical Oncology Research

3.1 Anesthesia and Animal Handling

3.2 Availability of Radiopharmaceuticals and Evaluation of Their Biodistribution Characteristics

3.3 Injection of the Radiopharmaceutical

3.4 Injection of CT Contrast Agent

3.5 Radiation Exposure

Part III: State-of-the-Art Preclinical SPECT/CT Systems

4.1 SPECT/CT System Design

4.2 A Sampling of Available Small-Animal SPECT- and SPECT/CT Systems

4.3 Image Reconstruction Techniques and the Quest for Quantitative SPECT

Part IV: Recent Examples of SPECT/CT as Applied in the Preclinical Oncology Setting

5.1 Characterizing Tumor Perfusion or Other Inherent Characteristics

5.2 Imaging the Targeting Abilities of Molecules in the Development of Potential Therapeutics and Molecular Imaging Agents

5.3 Imaging Cell Trafficking

5.4 Imaging Gene Transfer and Expression

5.5 Imaging Biodistributions and Evaluating Dosimetry—Chemotherapeutics and Combined Therapeutic/Imaging Agents

5.6 Imaging Other Pathologic Processes Associated with Cancer or Cancer Therapies

Conclusion

References

Optical Imaging

1 Non-Invasive Optical Imaging Techniques

2 Imaging Agents for Fluorescence Imaging

3 Reporter Systems for Bioluminescence Imaging
Applications of Small Animal PET

1. Introduction .. 248
2. Small Animal PET ... 249
 2.1 General Aspects .. 249
 2.2 Small Animal PET 251
 2.3 Small Animal CT and Small Animal PET 252
3. Conclusion ... 254
References ... 254

Preclinical Molecular Imaging Using PET and MRI

1. Introduction .. 258
2. Experimental Models of Cancer 259
3. Small Animal Molecular Imaging 261
4. Positron Emission Tomography 262
5. Magnetic Resonance Imaging and Spectroscopy 264
 5.1 Contrast Agents 266
 5.2 Dynamic Contrast-Enhanced MRI 268
 5.3 Steady-State Susceptibility-Contrast MRI 269
 5.4 Diffusion-Weighted MRI 270
 5.5 Arterial Spin Labeling 274
 5.6 Blood Oxygen Level Dependent MRI 274
6. Multimodality Imaging 275
7. Applications .. 276
 7.1 Metabolism .. 276
 7.2 Hypoxia .. 279
 7.3 Reporter Gene ... 283
 7.4 Angiogenesis .. 285
 7.5 Apoptosis ... 288
 7.6 Cellular Imaging .. 289
9. Summary and Outlook 296
References ... 297
Part III Clinical Applications

Quantitative SPECT/CT 313
1 Introduction .. 314
2 Technical Aspects ... 314
 2.1 SPECT/CT Instrumentation 314
 2.2 Registration of Multimodal Images 315
 2.3 Attenuation Correction of SPECT 316
 2.4 Quantitatively Accurate SPECT/CT 318
3 Clinical Aspects ... 326
4 Summary and Outlook .. 327
References ... 327

Optical Imaging of Breast Tumors and of Gastrointestinal Cancer by Laser-Induced Fluorescence ... 331
1 Introduction .. 332
2 Fluorescence Imaging of Breast Cancer 333
 2.1 The PTB Fluorescence Mammograph 334
 2.2 Examination Protocol .. 336
 2.3 Results on Malignant and Benign Tumors 337
 2.4 Advances of Permeability Sensitive Fluorescence Imaging with ICG ... 340
3 Cancer and Early Malignancies of the GI 343
 3.1 Protoporphyrin IX as Tumor Marker 343
 3.2 Time-Gated Fluorescence Imaging 343
 3.3 Clinical Studies ... 346
4 Outlook ... 347
References ... 348

FDG PET and PET/CT ... 351
1 Introduction .. 352
2 Clinical Applications of FDG PET and PET/CT in Oncology 353
 2.1 Non-Small Cell Lung Cancer 353
 2.2 Oesophageal Cancer .. 355
 2.3 Gastric Cancer .. 355
 2.4 Colorectal Cancer ... 356
 2.5 Gastrointestinal Stromal Tumors 356
 2.6 Head and Neck Cancer .. 357
 2.7 Melanoma ... 357
 2.8 Lymphoma .. 358
 2.9 Breast Cancer .. 359
 2.10 Ovarian Cancer .. 360
 2.11 Sarcomas .. 361
 2.12 Pancreatic Cancer .. 362
Molecular Imaging in Oncology
Schober, O.; Riemann, B. (Eds.)
2013, XVI, 416 p., Hardcover
ISBN: 978-3-642-10852-5