Contents

List of Symbols .. xv

Part I Focus of the Book

1 **Introduction** 3
 1.1 **Focus of the Book** ... 4
 1.2 **Fields of Application and Examples for Electromechanical Systems** .. 6
 1.3 **Design of Electromechanical Systems** 9
 1.4 **Simulation Methods for Electromechanical Systems** 10
 1.4.1 **Historical Overview** 10
 1.4.2 **Design Methods** 13

2 **Electromechanical Networks and Interactions** 15
 2.1 **Signal Description and Signal Transmission in Linear Networks** .. 16
 2.1.1 **The Circular Function as Basic Module for Time Functions of Linear Networks** 16
 2.1.2 **Fourier Expansion of Time Functions** 20
 2.1.3 **The Fourier Transform** 25
 2.1.4 **The Laplace Transform** 33
 2.2 **Electrical Networks** 36
 2.3 **Mechanical Networks** 40
 2.4 **Interactions** ... 44
 2.4.1 **Mechanical Interactions** 44
 2.4.2 **Electromechanical Interactions** 46
 2.5 **Structured Network Representation of Linear Dynamic Systems** .. 56
 2.6 **Basic Equations of Linear Networks** 58
Part II Network Representation of Systems with Lumped and Distributed Parameters

3 Mechanical and Acoustic Networks with Lumped Parameters

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Arrangements</td>
<td>62</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Coordinates</td>
<td>64</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Components</td>
<td>66</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Rules of Interconnection</td>
<td>74</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Isomorphism between Mechanical and Electrical Circuits</td>
<td>77</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Representation of Transient Characteristics of Mass Point Systems in the Frequency Domain (BODE diagram)</td>
<td>79</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Network Representation of Mass Point Systems</td>
<td>85</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Sample Applications</td>
<td>88</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Coordinates</td>
<td>100</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Components and System Equations</td>
<td>101</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Isomorphism between Mechanical and Electrical Circuits</td>
<td>102</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Sample Application for a Rotational Network</td>
<td>106</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Coordinates</td>
<td>108</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Acoustic Components</td>
<td>109</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Network Representation of Acoustic Systems</td>
<td>110</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Real Acoustic Components</td>
<td>114</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Isomorphism between Acoustic and Electrical Circuits</td>
<td>120</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Sample Applications</td>
<td>120</td>
</tr>
</tbody>
</table>

4 Abstract Linear Network

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Coordinates</td>
<td>129</td>
</tr>
<tr>
<td>4.2</td>
<td>Components</td>
<td>130</td>
</tr>
<tr>
<td>4.3</td>
<td>Nodal and Loop Rules</td>
<td>132</td>
</tr>
<tr>
<td>4.4</td>
<td>Characteristics of the Abstract Linear Network</td>
<td>132</td>
</tr>
</tbody>
</table>

5 Mechanical Transducers

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>Rigid Rod</td>
<td>137</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Bending Rod</td>
<td>141</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Ideal and Real Mechanical-Acoustic Piston Transducers</td>
<td>147</td>
</tr>
<tr>
<td>5.2.2</td>
<td>General Elastomechanical-Acoustic Plate Transducer</td>
<td>149</td>
</tr>
</tbody>
</table>
6 Mechanical and Acoustic Networks with Distributed Parameters

6.1 Representation of Mechanical Systems as one-dimensional Waveguides ... 165
6.1.1 Extensional Waves within a Rod 166
6.1.2 Approximate Calculation of the Input Impedance 172
6.1.3 Approximate Representation of an Impedance at Resonance .. 177
6.1.4 Approximated two-port Network Representation at Resonance ... 178
6.1.5 Flexural Vibrations within a Rod 183
6.2 Network Representation of Acoustic Systems as Linear Waveguides ... 192
6.3 Modeling of Transducer Structures with Finite Network Elements .. 195
6.3.1 Ultrasonic Microactuator with Capacitive Diaphragm Transducer ... 195
6.3.2 Fluid-filled Pressure Transmission System of a Differential Pressure Sensor 198
6.4 Combined Simulation with Network and Finite Element Methods .. 202
6.4.1 Applied Combination of Network Methods and Finite Element Methods ... 204
6.4.2 Combined Simulation using the Example of a Dipole Bass Loudspeaker ... 209
6.4.3 Combined Simulation using the Example of a Microphone with Thin Acoustic Damping Fabric 216

Part III Electromechanical Transducers

7 Electromechanical Interactions ... 229
7.1 Classification of Electromechanical Interactions 229
7.2 Network Representation of Electromechanical Interactions ... 233
8 Magnetic Transducers ... 247
8.1 Electrodynamic Transducer ... 247
8.1.1 Derivation of the Two-Port Transducer Network 247
8.1.2 Sample Applications ... 251
8.2 Electromagnetic Transducer ... 267
8.2.1 Derivation of the Two-Port Transducer Network 268
8.2.2 Sample Applications ... 275
8.3 Piezomagnetic Transducer ... 285
8.3.1 Derivation of the Two-Port Transducer Network 286
8.3.2 Sample Applications 296
8.3.3 Piezomagnetic Unimorph Bending Elements 302
8.3.4 Example of a Parametric Magnetoelastic Bending
 Sensor ... 308

9 Electrical Transducers .. 313
 9.1 Electrostatic Transducer 313
 9.1.1 Electrostatic Plate Transducer 313
 9.1.2 Sample Applications 323
 9.1.3 Electrostatic Diaphragm Transducer 331
 9.1.4 Sample Applications 334
 9.1.5 Electrostatic Solid Body Transducers 339
 9.1.6 Sample Application 341
 9.2 Piezoelectric Transducers with Lumped Parameters 345
 9.2.1 Model Representation of the Piezoelectric Effect .. 345
 9.2.2 Piezoelectric Equations of State and Circuit Diagram
 for Longitudinal Coupling 348
 9.2.3 General Piezoelectric Equations of State 350
 9.2.4 Piezoelectric Transducers and Corresponding
 Equivalent Parameters 353
 9.2.5 Piezoelectric Bending Bimorph Elements 358
 9.2.6 Piezoelectric Materials 360
 9.2.7 Sample Applications 365
 9.3 Piezoelectric Transducer as one-dimensional Waveguide ... 370
 9.3.1 Transition from Lumped Parameters to the Waveguide
 using the Example of an Accelerometer 371
 9.3.2 Piezoelectric Longitudinal Oscillator as Waveguide .. 375
 9.3.3 Piezoelectric Thickness Oscillator as Waveguide ... 375
 9.3.4 Sample Applications of Piezoelectric Longitudinal and
 Thickness Oscillators 381
 9.3.5 Piezoelectric Beam Bending Element as Waveguide ... 392
 9.3.6 Sample Applications of Piezoelectric Beam Bending
 Elements .. 393

10 Reciprocity in Linear Networks 413
 10.1 Reciprocity Relations in Networks with only One Physical
 Structure ... 413
 10.2 Reciprocity Relations in General Linear Two-Port Networks . 415
 10.3 Electromechanical Transducers 417
 10.4 Mechanical-Acoustic Transducers 420
Part IV Appendix

A Characteristics of Selected Materials 425
- A.1 Material Characteristics of Crystalline Quartz 425
- A.2 Piezoelectric Constants of Sensor Materials 426
- A.3 Characteristics of Metallic Structural Materials 427
- A.4 Material Characteristics of Silicon and Passivation Layers 428
 - A.4.1 Comparison of Main Characteristics of Silicon, Silicon Dioxide and Silicon Nitride Layers 428
 - A.4.2 Characteristics of Silicon Dioxide Layers 429
 - A.4.3 Characteristics of Silicon Nitride Layers 430
- A.5 Characteristics of Ceramic Structural Materials 431
- A.6 Material Characteristics of Selected Polymers 432
- A.7 Characteristics of Plastics as Structural Materials 433
- A.8 Composition and Material Characteristics of Selected Glasses 434
- A.9 Material Characteristics of Metallic Solders and Glass Solders 435
- A.10 Sound Velocity and Characteristic Impedance 436

B Signal Description and Transfer within Linear Networks 437
- B.1 Fourier Expansion of Time Functions 437
 - B.1.1 Estimate of Approximation Error with Numerical Analyses of Fourier Series ... 437
 - B.1.2 Sample Application for the Periodic Iteration of Singular Processes ... 440
- B.2 Ideal Impulse and Step Functions .. 442
 - B.2.1 Problem Definition .. 442
 - B.2.2 Ideal Impulses and their System Response 443
 - B.2.3 The Ideal Step Function and its System Response 448
- B.3 The Convolution Integral ... 449

References ... 453

Index .. 459
Electromechanical Systems in Microtechnology and Mechatronics
Electrical, Mechanical and Acoustic Networks, their Interactions and Applications
Lenk, A.; Ballas, R.G.; Werthschützky, R.; Pfeifer, G.
2011, XXIV, 472 p. 492 illus., Hardcover
ISBN: 978-3-642-10805-1