Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>Monomeric and Polymeric Carboxylic Acids</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Mono- and Polybasic Unsaturated Carboxylic</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Monobasic Carboxylic Acids with One Double Bond</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Unsaturated Dicarboxylic (Dibasic) Acids</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Unsaturated Carboxylic Acids with Triple Bond (Acetylenic Acids)</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Peculiarity of Polymerization of Unsaturated Carboxylic Acids and</td>
<td></td>
</tr>
<tr>
<td>their Polymers Structure</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Stereoregular Polyacids</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Cross-Linked Polyacids</td>
<td>18</td>
</tr>
<tr>
<td>2.5 Graft- and Block-Copolymers with Carboxyl Fragments</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Natural Polyacids</td>
<td>22</td>
</tr>
<tr>
<td>2.6.1 Polysaccharides</td>
<td>22</td>
</tr>
<tr>
<td>2.6.2 Humic Acids</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>24</td>
</tr>
<tr>
<td>Synthesis of Unsaturated Carboxylic Acid Salts</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Reaction of Unsaturated Carboxylic Acids with Metal Hydroxides,</td>
<td>27</td>
</tr>
<tr>
<td>Oxides, and Carbonates</td>
<td></td>
</tr>
<tr>
<td>3.2 Reactions of Acetates and Other Salts with Unsaturated Carboxylic</td>
<td>29</td>
</tr>
<tr>
<td>Acids</td>
<td></td>
</tr>
<tr>
<td>3.3 Ligand Exchange Reactions</td>
<td>30</td>
</tr>
<tr>
<td>3.3.1 With Metal Halides</td>
<td>31</td>
</tr>
<tr>
<td>3.3.2 With Metal Alkoxides</td>
<td>32</td>
</tr>
<tr>
<td>3.3.3 Other Exchange Reactions</td>
<td>33</td>
</tr>
<tr>
<td>3.3.4 Synthesis of Bimetallic Compounds</td>
<td>34</td>
</tr>
<tr>
<td>3.4 Sol–Gel Reactions</td>
<td>34</td>
</tr>
<tr>
<td>3.5 Other Reactions</td>
<td>35</td>
</tr>
<tr>
<td>3.6 Synthesis of Cluster Containing Unsaturated Carboxylates</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>
4 Spectral Characteristics and Molecular Structure of Unsaturated Carboxylic Acid Salts .. 57
4.1 Metal (Meth)acrylates .. 57
 4.1.1 IR Spectroscopy ... 58
 4.1.2 Magnetic Properties .. 63
 4.1.3 Electron Spectroscopy .. 64
 4.1.4 Molecular Structure ... 65
4.2 Metal Dicarboxylates ... 69
 4.2.1 Monomeric Salts ... 69
 4.2.2 Coordination Polymers ... 74
 4.2.3 Ferromagnetic Properties of Metal Dicarboxylates 83
4.3 π-Complexes of Metal Carboxylates 85
4.4 Unsaturated μ-Oxo Multinuclear Metal Carboxylates 88
 4.4.1 IR-Spectroscopy ... 89
 4.4.2 Mass-Spectrometry .. 91
 4.4.3 Molecular Structure .. 92
4.5 Cluster-Containing Unsaturated Carboxylates 94
4.6 Metal Carboxylates with Unsaturated Ligands of Acetylene Type... 96
References ... 100

5 Polymerization and Copolymerization of Salts of Unsaturated Carboxylic Acids .. 105
5.1 Types of Initiation .. 106
5.2 Kinetic and Stereochemical Effects 109
 5.2.1 Radical Polymerization of Alkali and Alkaline Earth Metal Salts of Unsaturated Carboxylic Acids 109
 5.2.2 Radical Polymerization of Transition Metal (Meth)acrylates ... 112
 5.2.3 Regulation of Stereochemistry of Radical Polymerization of Metal Carboxylates 117
5.3 Solid Phase Polymerization of Unsaturated Metal Carboxylates .. 121
 5.3.1 Thermal Polymerization of Unsaturated Metal Carboxylates ... 122
 5.3.2 Solid State UV and Radiation Initiated Polymerization 123
 5.3.3 Reactivity of Unsaturated Metal Carboxylates in Solid Phase ... 125
5.4 Copolymerization and Terpolymerization 128
 5.4.1 The Main Principles of Copolymerization of Alkali and Alkaline Earth Metal Salts 129
 5.4.2 Reactivity of Tin-Containing Carboxylates 131
 5.4.3 Copolymerization of Transition Metal Salts 133
 5.4.4 Kinetic Features ... 134
 5.4.5 Terpolymerization .. 138
References .. 141
6 Polymer-Analog Transformations in Reactions of Synthesis of Metal Macrocarboxylates .. 145
 6.1 Complexation of Metal Ions with Macromolecular Ligands 146
 6.2 Metal Ion Binding by Polyacids .. 150
 6.3 Metal Ion Binding by Stereoregular Polyacids 159
 6.4 Peculiarities of MXₙ Binding by Cross-Linked Polyacids 161
 6.5 Formation of Macrocomplexes with Grafted Polycarboxylic Fragments ... 162
 6.6 Bimetallic Polycomplexes ... 166
 6.7 Formation of Organic–Inorganic Composites 168
 6.8 Binding of MXₙ by Natural Carboxyl Group Containing Polymers ... 171
References ... 174

7 Molecular and Structural Organization of Metal-Containing (Co)Polymers .. 179
 7.1 Ionic Aggregations and Multiplets ... 179
 7.1.1 Ionomers Synthesis .. 179
 7.1.2 Morphology and Structure of Ionomers 180
 7.2 Morphology and Topological Structure of Metal-Containing Polymers ... 191
 7.2.1 Three-Dimensional Network Polymers 192
 7.2.2 Interpenetrating Polymer Networks 194
 7.2.3 Hybrid Supramolecular Structures 198
 7.3 Basic Types of Units Variability in Metal-Containing (Co)Polymers ... 205
 7.3.1 Units Variability, Caused by Elimination of Metallogrouping During Polymerization 207
 7.3.2 Units Variability, Caused by Various Oxidation Rate of d-Metals ... 208
 7.3.3 Anomalies in Metal-Containing Polymers Chains Caused by a Variety of Chemical Linkage of a Metal with a Polymerized Ligand 209
 7.3.4 Extracoordination as One of the Types of Anomalies (Spatial and Electronic Structure of a Polyhedron) 210
 7.3.5 Unsaturation of Metal-Containing Polymers and Their Structurization ... 211
References ... 213

8 Properties and Basic Fields of Application of Metal-Containing Polymers ... 217
 8.1 Improvement of the Polymeric Materials Properties Based on Cross-Linking Action of Monomeric and Polymeric Salts ... 217
8.2 Radiation Resistance, Photophysical and Optical Properties of Metal-Containing (Co)Polymers .. 226
8.3 Water-Absorbing and Sorption Properties of Metal-Containing (co)Polymers .. 232
8.4 Sorption Properties of Metal-Containing (co)Polymers 238
8.5 Catalysis by Macromolecular Metal Carboxylates 245
 8.5.1 Catalytic Reactions of Oxidation of Hydrocarbons 246
 8.5.2 Reactions of Peroxidase Decomposition 249
 8.5.3 Other Catalytic Reactions .. 251
References ... 252

9 Monomeric and Polymeric Metal Carboxylates as Precursors of Nanocomposite Materials ... 257
 9.1 Formation and Stabilization of Nanoparticles at Presence of Macroligands with Carboxyl Functional Groups 257
 9.2 Basic Obtaining Methods of Metal-Containing Polymeric Nanocomposites on the Basis of Monomeric and Polymeric Carboxylates ... 263
 9.2.1 Thermal Conversions of Metal-Containing Carboxylated Precursors .. 263
 9.2.2 Polymer Carboxylate Gels and Block Copolymers as Reactors for Nanoparticles ... 273
 9.2.3 Sol–Gel Methods in the Obtaining of Oxocluster Hybrid Materials ... 277
 9.2.4 Metal-Containing Polymeric Langmuir–Blodgett Films 279
 9.3 Metal-Containing Polymeric Nanocomposite Materials of the Carboxylated Type ... 281
References ... 284

10 Conclusion .. 289

Index .. 293
Macromolecular Metal Carboxylates and Their Nanocomposites
Pomogailo, A.D.; Dzhardimalieva, G.I.; Kestelman, V.N.
2010, X, 306 p., Hardcover
ISBN: 978-3-642-10573-9